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12.1. 
Introduction
The growth of ocean prediction research, capability, applica-
bility, availability, maturity, and user uptake from an initial 
idea 25 years ago, while gradual, has been unrelenting. To-
day’s capacity and maturity in ocean prediction goes beyond 
what was initially conceived and provides a strong basis for 
advancement of societal benefits. Over the next 10 years, 
ocean prediction systems will continue to gradually rival 
weather prediction systems in the sense of ubiquitous use, 
protecting lives, economic impact, and supporting custodi-
anship of the environment. Building a framework with stan-
dards and best practices for the full operational oceanogra-
phy value chain will enable further harnessing of prediction 
systems in supporting a healthy ocean at the same time of 
a blue economic growth for all countries. This will further 
awareness and accessibility of the marine environment 
through digital platforms underpinning increases in ocean 
prediction literacy, capacity building, applications, and ser-
vices (Figure 4.1). 

Herein we outline the expected advances of ocean prediction 
and other supporting components of operational oceanogra-
phy over the next decade. An underlying theme is the inte-

gration of ocean prediction systems within the larger context 
of operational oceanography, seamless environmental pre-
diction, and the blue economy. This requires a transparent 
framework approach of standards and best practices, en-
abling all countries, particularly those with the least resourc-
es, to engage and benefit.

This chapter introduces the key drivers for the next genera-
tion of OOFS, spanning from global to coastal scale observing 
systems (Section 12.2) to numerical models evolution (Sec-
tion 12.3), data assimilation (Section 12.4) and ensemble sys-
tems for prediction (Section 12.5), from the growing AI tech-
niques for understanding physical processes (Section 12.6) 
to seamless approach (Section 12.7) and DTO (Section 12.8), 
including as well the evolution in quality assessment (Sec-
tion 12.9). The last sections focus on planned evolution for 
state-of-the-art services like the Copernicus Marine Service 
(Section 12.10) and international initiatives promoted by the 
UN Decade of the Ocean (Section 12.11).

12.2. 
Observing system evolution with ocean prediction engagement
The quality of the ocean analysis and forecasts highly relies 
on observations assimilated for constraining the ocean cir-
culation in ocean forecasting systems. The evolution of the 
forecasting systems towards increased realism to represent 
a larger spectrum of ocean processes and scales will be un-
derpinned by the ‘adapted’ in situ and satellite observations 
that efficiently constrain the different scales of the ocean 
variability. Close collaboration between ocean forecasting 
centres and the observation providers is crucial to promote 
such evolution. Communication ensures the best use of in-
formation from the present to the future observation sys-
tems. It allows forecasting centres to inform on the obser-
vation use and to report on their impacts on analysis and 
forecasts. In the longer term, it also increases opportunities 
for the ocean forecasting centres to contribute to evolve 
ocean observing system designs to optimally meet require-
ments and enable capabilities of future operational systems. 
Inclusion of forecasting centres in designing and evaluating 

the future impact of the GOOS 🔗1 component has started 
to be recognized as a best practice in the observation and 
prediction community. 

In such a context, OOFS strictly depends on the availability of 
near-real time observations for assimilation and validation 
purposes. Accuracy of forecast products is largely impacted 
by the quality of assimilated observations, so that the ef-
fort of the community is to support the forecasters with high 
quality data in space and time sampling. Le Traon et al. (2019) 
provides the Copernicus Marine Service strategy for obser-
vational network evolutions and the requirements for OOFS 
to support maritime safety, marine resources, marine and 
coastal environments, weather, seasonal forecasting, and 
climate. According to this document, the main priorities are:

1.   https://www.goosocean.org/ 
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•	 For satellite data:

•	 Guaranteeing continuity of the present operational 
missions’ capacity of Sentinel for downstream coast-
al applications, and of Cryosat mission for monitoring 
of sea ice thickness and sea level in polar regions;
•	 Developing new capacity for wide swath altimetry 
for the future OOFS and services; 
•	 Developing microwave mission for the improvement 
of spatial coverage of sea surface temperature, sea ice 
drift, sea ice thickness, and sea surface salinity;
•	 Enforcing R&D for observing sea surface salinity 
and ocean currents from space.

•	 For in-situ data:

•	 At global scale, the main future challenges are: 
a) to improve the coverage of biogeochemical mea-
surement, b) the measurement of deep temperature 
and salinity, and c) measurement of in-situ velocity 
observations, sea ice observations, and open-ocean 
wave measurements;
•	 At a regional scale, the main priority is to fill gaps 
for a wide range of variables in the shelf-coastal ob-
servational networking, in order to improve monitor-
ing and forecasting capacities.

Copernicus Marine Service provides specific strategic docu-
ments 🔗2 for both satellite and in-situ observations to sup-
port monitoring and forecasting activities. The GOOS defines 
the following strategic objectives for observing systems at 
global level towards 2030: 

•	 to deepen engagement and impact by enforcing the 
connection with forecasting centres;
•	 to deliver an integrated fit-for-purposes observing 
system able to support and expand the implementation 
of observing systems and ensuring data management 
according to the FAIR principles;
•	 to build future observational networks by support-
ing innovation in observing technologies and extend-
ing systematic observations to understand impacts on 
the ocean.

12.2.1.	Challenges for the current ocean 
observing systems

Major challenges for the current ocean observing systems 
include: i) most of the ocean observations made by non-op-
erational oceanography communities (e.g. environment, fish-
ery, research, and industrial sectors) have not been used for 
operational forecasting; the ocean observations are made by 

2.   https://marine.copernicus.eu/about/observation-re-
quirements 

various sectors with different monitoring and data collection 
standards, and little efforts have been made to harmonise 
observations from the different sectors; and ii) technolog-
ic bottlenecks and significant data gaps in sub-surface, sea 
bottom, geological and biological observations. 

For developing an integrated and unified ocean observing 
system to support the seamless information service, three 
pillars are recommended, , as shown in Fig. 12.1. The first pillar 
is to maximise the value of existing observations by breaking 
the institutional and sectorial barrier (She et al., 2019) and fit 
for the purposes of multi-sectors. This can be implemented 
by performing multidimensional integration of operational 
and non-operational ocean observing communities, includ-
ing operational monitoring, environment monitoring, fishery 
monitoring, research monitoring, crowd (citizens and NGOs) 
monitoring and other sectoral monitoring (industrial and so-
cioeconomic). The observations should be “collected once 
and used for many times” (Martín Míguez et al., 2019). Due 
to the existing mandate of monitoring entities, either public 
or private, current ocean observing practices are designed 
separately to fit for the purpose of individual sectorial ser-
vice, and observations are hardly shared from different mon-
itoring communities. When designing multidimensional in-
tegration on a national and regional scale, unified standards 
should be applied. The operational and autonomous plat-
form is an efficient framework for the integrated and unified 
ocean observing, which is highly recommended. 

The second pillar is to develop, deploy, and utilise large net-
works of autonomous, cost-effective, innovative sensors to 
fill the observation gaps in subsurface and emerging obser-
vations, e.g. marine litter, biological variables, and under-
water noise. A combination of breakthroughs in underwater 
communication technology, underwater robotics, and ML/AI 
may significantly improve the capacity of underwater moni-
toring, especially for pollutants, biogeochemical and biolog-
ical variables. Adaptable observations are also needed for 
characterising key processes underpinning predictability in 
the marine earth system. 

The third pillar is to design and optimise existing ocean ob-
serving to fill gaps in the characterizations of processes and 
sensitive regions that are crucial to the predictability and fit 
for the purposes in multi-sectors. It is essential that the mon-
itoring capacity is based on an integrated system of in-situ, 
remote sensing, models, assimilation, and ML/AI tools. Sam-
pling schemes of such a system can then be designed to opti-
mise the integrated monitoring capacity, so that observations 
would most effectively be used to reduce the earth system 
prediction uncertainties. It should be noted that dedicated 
observations should be identified and included to address 
specific predictability in the UOM (She et al., 2016). 
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12.2.2.	 Observing System Evaluation

At present, OS-Eval, based on ocean forecasting systems, are 
not often conducted in a coordinated manner. The most used 
techniques of OS-Eval are data denial experiments with real 
or simulated observations (e.g., OSE and OSSE). Although 
only observation platforms which are already existing with 
real observations can be evaluated, simulated observa-
tions allow us to evaluate the impact of future platforms or 
evolution of the observation network. Impact assessment 
methods will evolve in the future with more sophisticated 
techniques based on ensemble and adjoint methods, and 
potentially also AI. Considering that BGC applications and the 
earth system predictions, including the ocean component, 
are progressively becoming more important, the develop-
ment of suitable evaluation methods for those applications 
is also indispensable. Improving analysis/forecast accuracy 
and developing methods assimilating new types of observa-
tion data will increase the ability to make fair assessments 
for various platforms. Multi-system evaluation and regular 
re-assessment of the observation impact to follow the sys-
tem evolutions are required to improve the robustness of the 
results by moderating system-dependency. 

Enhanced communication and coordination between model-
ling/data assimilation experts and observation/network ex-
perts will be essential for a proper design and interpretation 
of OS-Eval, especially to extract compelling messages on the 
ability of the ocean observing system to control processes 
having different temporal and spatial scales. The provision of 
regular reports on ocean observation impacts in ocean predic-
tion systems is expected to enhance such communication. It 
should also be noted that OS-Eval activities require dedicated 
infrastructures and resources. Cooperation with internation-

al partners (e.g. OceanPredict, GOOS/ROOS, WMO, IOC, etc.) is 
hence essential to establish a substantial value chain between 
ocean observation networks and ocean prediction systems. 

OS-Eval activities require dedicated infrastructures and re-
sources. It is essential to strengthen the capabilities of oper-
ational and climate centres to assess the impact of present 
and future observations to guide observing system agencies 
but also to improve the use of observations in models.

An observation network cannot be considered by its own but 
should be evaluated in complementarity with other in-si-
tu and satellite networks. The synergy from a combination 
of observation platforms’ data with the other existing and 
planned in-situ and satellite observations should be evalu-
ated. This will be necessary since the model forecasts need 
to be constrained on a large spectrum of scales, as individu-
al platforms cannot provide it. Optimally leveraging satellite 
and in-situ observations to improve the ocean predictability 
is an important research topic with strategic importance. Un-
derstanding and being able to showcase and demonstrate 
the impact of both present and future observing systems in 
improving ocean prediction (and environmental prediction in 
general) is important to justify and maintain long term in-
vestments for the observation system. Feedback from such 
efforts enables observation groups to know where to invest 
their efforts, both technologically and in terms of geographic 
coverage in density and scope.  

To best showcase evaluations of the observing system, pre-
diction impact metrics should be generated in terms of value 
for: (1) user and application needs; and (2) observing system 
needs. On the user and application side, elements like the 
WMO RRR can be used, in which the impact of an observa-

Environmental
Fishery

Hydrological
Operational
Commercial

Research

Physical
Biogeochemical

Biological
Human Activity

In-Situ
Remote Sensing

Modelling
Sensor TechnologyFit

-fo
r-p

ur
po

se
 m

onitoring integration
Marine data integration

Instrumental integration

Figure 12.1.	 Integrated observing. Unlocking the value of ocean observing by integrating observations in 
three dimensions: fit for purpose, parameter, and instrumental (source: She et al., 2019).
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tion on the forecast system is framed in terms of impact on 
a user or application. This can entail further post processing 
of prediction output, to translate forecasting impact into in-
formation that the end user will use directly. For example, for 
Search and Rescue at sea it may be necessary to know the 
impact of an observing system on drift prediction, and quan-
tifying how much it would decrease the search area at sea 
while still ensuring high probability of detection. There is also a 
need to show the impact of an observing system on a variety 
of applications, as well as to provide insight into the impact 
of decreasing or augmenting the number of observations. 
Additionally, when developing metrics to support observing 
system needs, the multi-purposeless of the observations (cli-
mate, ocean services and health) needs to be covered. 

Real-time impact assessment methods should also be de-
veloped to monitor and report on the use and impact of the 
different assimilated observation networks by operational 
ocean forecasting centres. This will help to detect impacts of 
changes in the observation network, and take countermea-
sures against them. 

In the next subsections are presented the evolution plans for 
the observatory component, i.e. ARGO and satellite observa-
tions, which will drive the next generation of OOFS.

12.2.3.	 Argo evolution plans

The international programme Argo (🔗3) is currently the ma-
jor global initiative for the collection of “information from in-
side the ocean using a fleet of robotic instruments that drift 
with the ocean currents and move up and down between the 
surface and a mid-water level”. In Chapter 4 can be found 
an overview on the current ARGO operational capabilities for 
OOFS. Argo design after 2020 is available at 🔗4, including 
the following major targets:

•	 Improved observational capacity in the polar sea-ice 
regions and marginal seas;
•	 Increased resolution in key areas like the Western 
Boundary Currents in which mesoscale noise is high, 
and the Equatorial region for which high temporal res-
olution is needed;
•	 Launch of new missions for biogeochemical and deep 
region variables.

Next generation Argo programme is also oriented towards 
validation and deployment of new sensors for measuring 
ocean turbulence and small-scale mixing, which is funda-
mental for improving OOFS, numerical models, data assimi-
lation schemes, and validation of forecast products. 

3.  https://argo.ucsd.edu/
4.  https://argo.ucsd.edu/argo-beyond-2020/

Expansion of the observing network requires maintenance 
and advancements of data management systems among pro-
viders and forecasting centers to ensure interoperability and 
open access to growing data inflow (Roemmich et al., 2019)

12.2.4.	 Next phase for satellite missions 

Satellite observations, together with those in-situ, are the 
key element for the global ocean observing system. In Chap-
ter 4, it has already been provided a general overview of 
the type of data used for building OOFS. Next generation of 
forecasting systems will also exploit the new technological 
advancements in the observational network, and satellite 
measurements will play an important role in monitoring the 
cryosphere, coastal zones, and inland waters to improve the 
quality of marine services. The International Altimetry Team 
has recently published a contribution about the future 25 
years of progress in altimetry measurements (International 
Altimetry Team, 2021); according to this work, the main re-
quirements by altimetry for scientific and operational ad-
vances of operational oceanography, and more in general for 
Earth system science, are:

•	 Increasing the coverage of satellite measurements to 
support ocean dynamics understanding, from smaller 
mesoscale to sub-mesoscale, by means of multi-plat-
form in-situ measurements, multi-satellite and SAR, and 
SAR-interferometry altimetry;
•	 The design of ad-hoc experiments for in-situ data 
collection guided by remote data;
•	 The evaluation of vertical circulation by means for in-si-
tu and high resolution sea surface height measurements;
•	 Guaranteeing the continuity of the current operation-
al measurements;
•	 Estimating uncertainties on regional sea level trends 
by comparing tide gauges with GNSS positioning with 
altimetry;
•	 Improving sea level record at coastal scale by using 
high resolution SAR altimetry, tide gauges with GNSS 
positioning, and developing GNSS reflectometry (the 
last is very promising for providing sea level change 
measurements);
•	 Increasing the spatial resolution of altimetry products 
with advanced techniques like SARIn-based “swath mode” 
processing and fully focused SAR over polar oceans;
•	 Increasing not only spatial but also temporal reso-
lution by means of higher resolving altimeter such as 
SWOT, accompanied by larger altimetry constellation that 
includes swath and conventional altimetry, doppler wave 
and current scatterometer, and integrated altimeter. 
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Ocean models are one of the pillars for OOFS. Chapter 4 
provides information on current modelling capacities while 
Chapters from 5 to 10 deepen the theoretical aspects, but 
still remain a main question to be answered: What is expect-
ed by ocean models for the future OOFS? Fox-Kemper et al. 
(2019) provided an extensive review on challenges and per-
spectives in ocean models, touching many scientific open 
questions and issues to solve. In particular, evolving the core 
models to address adequate scales in space and time, ac-
curately representing physical processes, and running fastly 
is the baseline for improving predictability, as well as past 
reconstruction of the blue, green and white ocean. These are 
the challenges that have to be tackled for the improvement 
of future OOFS.5

Le Sommer et al. (2018) showed that the evolution in ocean 
modelling for operational oceanography is strictly connect-
ed to resolve physical processes down to the submesoscale 
(Chassignet and Xu, 2021) and to describe internal wave and 
internal tides at a global scale thanks to increase in comput-
er power and improved physical parameterization (Shriver et 
al., 2012). Increasing resolution in space and time is not the 
only way to address high quality operational products: mod-
ularity of modern geoscientific models is key for addressing 
modelling complexity (Le Sommer et al., 2018). 

Modelling complexity and modularity for the next generation 
of OOFS have a computational cost that needs to be account-
ed for once we consider evolutions in numerics. Evolutions in 
High Performance Computing is then another pillar on which 
establishing OOFS; scientific questions to be solved require 
also to face technological challenges. Le Sommer et al. (2018) 
highlighted how the main current limitations in the modelling 
framework capacity is not due to computational speed of the 

5.  https://marine.copernicus.eu/sites/default/files/media/
pdf/2020-10/CMEMS-requirements-satellites.pdf 

processors, but on access to memory and latency in input/
output. Such limits require a deep revision on the way devel-
opments are carried on, but sustained collaboration between 
ocean modellers and computer scientists is also key. 

The usage of graphics processing units (GPU) is progressively 
accelerating the Earth system modelling the atmosphere and 
the ocean. This transition to modern massive supercomput-
ers requires re-design numerical codes and HPC optimiza-
tion/parallelization strategies. In the oceanographic commu-
nity, codes have been progressively ported on hybrid CPU/
GPU architectures: for example, Xu et al. (2015) provided a 
first example of porting of the POM on GPU architecture, fo-
cusing on adopted strategy for memory access optimization, 
new design of communications, boundary optimization over-
lapping approach, and I/O optimization, achieving over 400x 
speedup against a single CPU core, reducing energy con-
sumption by about seven times. Liu et al. (2019) provided a 
description of the first parallel implementation and optimi-
zation of the ROMS on a many-processor system, the Sunway 
sw26010: the result showed that the speedup of optimised 
hotspot program can be up to 3.69x with respect to original 
ROMS one. Such examples demonstrate how future complex 
computing architectures can be exploited for accelerating 
ocean models execution, benefiting operational systems, 
and opening new frontiers in numerical modelling.

Growing application requirements push from petascale to 
exascale: in the near future larger datasets, more parame-
ters, much more computing, more need for parallelism, and 
large power consumption will be available. These improve-
ments are strictly connected to evolutions in climate and 
ocean modelling that aim to represent real-world systems 
characterised by multi-physics and multi-scale interaction in 
space and time, opening to predictive science. 

12.3. 
Numerical models planned evolutions, including adaptation to 
new HPC systems 

To support operational oceanography and marine appli-
cations, Copernicus Marine Service  has drawn up a doc-
ument 🔗5  that describes the main requirements for the 
evolution of the Copernicus Satellite Components. It fo-
cuses on the need of a multi-sensor and multi-mission 
approach for collecting SST, SSS, ocean colour, currents, 
wind, and wave measurements. This would constrain fu-

ture high resolution open ocean, coastal models, and cou-
pled ocean/wave models. The document also recognizes 
the need of improving space/time resolution, to better mon-
itor and forecast the physical and biogeochemical state of 
the ocean at fine scale, and to improve the monitoring of 
coastal zones and of rapidly changing polar regions.
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Emerging observing technologies provide impetus to the devel-
opment of DA systems. Operational ocean DA systems are con-
stantly evolving their application of improved data assimi-
lation methods, their use with increased resolution models 
and models with increased complexity, their use of new and 
upcoming observing technology, and their use of new com-
munity DA software and computer hardware infrastructures. 
Below is a summary of some of the areas in which DA is ex-
pected to evolve in operational forecasting systems over the 
next 10 years.

In terms of the DA methodology, the most immediate develop-
ment is the merging of ensemble and variational methods. Draw-
ing on the strengths of both approaches, the “hybrid” approach 
is being developed in a number of forecasting centres. The static 
or parametrized version of the background error covariances 
used in variational methods and the flow-dependent estimates 
from an ensemble are combined. Experience from NWP suggests 
that the hybrid approach performs better than an either pure 
variational or pure ensemble method (Lorenc and Jardak, 2018); 
efforts are underway to implement similar capability in global 
and regional ocean forecasting systems. These are likely to reach 
some maturity over the coming few years. More sophisticated 
DA methods, which do not rely on the assumption that forecast 
errors have an unbiased Gaussian distribution (such as particle 
filters, van Leeuwen et al., 2015), are being actively pursued to 
deal with, for instance, biogeochemical variables. Another grow-
ing area of methodological development is the application of 
machine learning to the data assimilation problem (Bonavita et 
al., 2021), particularly in regard to model error estimation, model 
parameter estimation, and the estimation of forecast error cova-
riance statistics.

Ocean model resolution is constantly being increased as 
more computer resources become available. DA systems need 
to evolve to make sure they can deal with the larger range of 
scales in the models. The complexity of models is also increasing 
in both the ocean models themselves and the different 
types of coupled models being used. Applying DA methods to 
ocean/sea-ice models, physical-biogeochemical models, acous-
tic-physical models, and more complete earth system models 
that include many different earth system components, is an 
active area of research (Penny et al., 2019). Models used for op-
erational ocean, sea-ice, and atmosphere forecasting on short 
timescales are increasingly becoming coupled together and 
the data assimilation methods needed to effectively initialise 
these systems are being developed. Most operational coupled 
weather forecasting systems do not currently use strongly cou-
pled data assimilation methods, whereby ocean observations 
can directly influence the atmospheric analysis and vice versa, 
but they are expected to be developed and implemented over 
the next decade. 

The software infrastructure needed to apply the data assim-
ilation is also under development by several new commu-
nity DA software systems, including the DART (Anderson et 
al., 2009), the OOPS, the JEDI, EnKF-C (Sakov, 2014), and the 
PDAF (Nerger et al., 2020). The computer hardware used to 
run forecasting systems is also evolving with different ar-
chitectures such as GPUs, which will become a strong com-
putational candidate for operational forecasting systems in 
a 10-year timeframe along with the evolution of numerical 
codes. The community software systems provide the oppor-
tunity for more collaboration between operational forecast-
ing groups, and between operational and research groups. 

12.4. 
Future evolutions in ocean data assimilation for operational 
ocean forecasting

Exascale computing is then the next frontier to build global 
climate systems at the optimal model resolution that requires 
a high level of performance capabilities but remaining within 
a specific power budget. Operational centres need to account 
for heterogeneous computing resources: heterogeneous com-
puting aims to match the requirements of each application 
to the strengths of CPU/GPU architectures (Mittal and Vetter, 
2015). The collaborative framework among different hardware 
components is an open research field that aims at:

•	 Port large-scale codes written in CPU or GPU-suited 
languages into heterogeneous computing systems min-
imising overhead and error-prone;
•	 Design new suitable data-access strategies to take 
full advantage of fused CPU-GPU systems;
•	 Reduce use of more classical programming languages 
like Fortran in favour of more modern computing lan-
guages such as Python;
•	 Increase data analytics capacities;
•	 Decrease energy consumption towards Green Computing.
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12.5. 
Future of ensemble prediction systems
Numerical ocean, weather, seasonal and climate forecasting 
systems across the world are tending towards becoming cou-
pled ensemble data assimilation prediction systems (Brass-
ington et al., 2015; Barton, 2021; Buizza, 2021; Frolov, 2021; Fujii 
et al., 2021; Komaromi, 2021), including a better coverage of 
the inter-relationships among the geophysical domains of 
the ocean, atmosphere, sea ice, land, and biogeochemistry 
(Sandery et al., 2020; O’Kane et al., 2021). Forecasting systems 
are also increasingly applied to finer spatiotemporal scales.

The need to quantify the probability distribution of fore-
cast error in coupled and downscaled models, as well as the 
reliability and accuracy of forecasts, will be served well by 
ensemble prediction systems, such as those using the EnKF 
(e.g., Sandery et al., 2020; O’Kane et al., 2021; Sun et al., 2020; 
Minamide and Posselt, 2022). 

Ensemble prediction systems enable synthesis of models 
and observations leading to data that can be used to provide 
best estimates of geophysical variables and quantify the 
dynamics of their uncertainty (Sandery et al., 2019) (Figure 
12.2). Uncertainty quantification will become as important in 
forecasts as the forecasts themselves, providing guidance on 
reliability and insight into fast growing disturbances in the 
geophysical environment. As described in other sections of 
this chapter, advances in ensemble prediction will also be 
coupled to improvements in models, observations, data as-
similation, computer resources and technology. 

There is an associated loss of predictability towards finer 
scales (Jacobs et al., 2021). Prediction systems using coupled 
data assimilation and finer spatial resolution will require 
larger ensembles, more frequent, representative and accu-
rate observations, and improved data assimilation practic-
es. Extending the range of predictability will be facilitated 
by advances to ensemble prediction systems. Operational 
ensemble systems will incorporate improved methods for 
data assimilation in the presence of model error and strong 
non-linearities, such as the iterative EnKF (Sakov et al., 2017), 
hybrid covariance methods (Kotsuki and Bishop, 2022), and 
assimilation of non-linear observations such as water va-
pour, cloud, precipitation, sea-ice, and phytoplankton con-
centration (Bishop, 2016; Posselt and Bishop, 2018).

Combining ensemble prediction with machine learning and 
artificial intelligence will also play an increasing role in fore-
casting (Brajard et al., 2021; Weyn et al., 2021). In some in-
stances, forward models with reduced order low dimensional 
and data-driven differentiable emulators (Maulik et al., 2021) 
will be able to replace full non-linear models to reduce com-
putational cost and assist in searches for initial conditions, 
patterns, parameterisations and ensemble perturbations 
appropriate for particular forecasts. Ensemble prediction 
systems will be used to identify initial states, forcing and 
dynamics that contribute to regime transitions (O’Kane et al 
2019; Quinn et al., 2020) and in the forecasting of extreme 
events (Hawcroft et al., 2021). 

Forecast model parameters will continue to be poorly known, 
subject to uncertainty, dependent on grid resolution, and a 
source of model bias requiring joint state and parameter es-
timation (Kitsios et al., 2021). With this approach, predictabil-
ity of certain geophysical processes may be improved (Zhang 
et al., 2017). Future ensemble prediction systems will be opti-
mised with model parameters that minimise bias in the ensem-
ble mean but that adequately represent the parameter’s error 
probability distribution in the ensemble (Gao et al., 2021). Cou-
pled model forecasts will be able to be optimised in state and 
parameter space. Model error minimization will be multi-variate 
and simultaneous across the geophysical realms with respect to 
the global network of observations (Sandery et al., 2020).

Ensemble prediction systems will play an increasing role in 
the future design of observation systems (Sandery et al., 
2019 and 2020). Coupled ensemble prediction provides in-
sight into unobserved variables through cross domain co-
variances. Future applications of coupled ensemble predic-
tion systems will provide improved reanalysis products with 
tighter constraints on carbon, sea-ice volume, air-sea fluxes, 
ocean heat storage and transport, using optimally designed 
observing systems. 
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Unstructured mesh models that enhance resolution towards 
the coastline for detailed hydrodynamic and biogeochemical 
forecasting of coastal and river, lake and estuarine circulation 
processes (Herzfeld et al., 2020) will be run as ensemble pre-
diction systems. Meshes that adapt resolution according to ar-
eas of most rapidly growing geophysical instabilities, such as 
in tropical cyclone, tsunami, and flood forecasting (Beisiegel 
et al., 2021) will also be run as ensemble prediction systems. 

As systems continue to be developed, improving the accura-
cy of forecast error covariance estimates will deliver coupled 
downscaled analyses and forecasts with greater skill. With 
advances to observation systems, relatively higher resolu-
tion monitoring and ensemble prediction of sea-ice, waves, 
currents, sea-levels, temperatures, biogeochemistry, and 
the tracing of river plumes containing sediments, contami-
nants, and pollutants may be made possible using ensem-
ble prediction systems. Access to future higher resolution 
ocean in-situ and satellite data may enable prediction of the 

Figure 12.2.	 Quantifying the dynamics of system uncertainty. This image shows forecast ensemble spread in 
sea surface temperature (K) and sea ice concentration on 28th September 2017 (in observation space) from a 96 
member, 0.1o horizontal resolution coupled ocean-sea-ice EnKF prediction system, known as ACCESS-OM2-EnKF-C 
(Sakov, 2014; Kiss et al., 2020). SST spread is related to uncertainty: the forecast dynamical state of Tropical Insta-
bility Waves and sea ice spread shows that forecast uncertainty at this time of year is greatest in certain areas.

ocean sub-mesoscale circulation and near-field currents for 
search and rescue, ship-routing, safety, and recreation. As 
science, technology, networking, and connectivity improves, 
real-time assimilation of user-supplied observations into 
ensemble prediction systems to augment local predictability 
may become possible.  
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Recent developments in AI open many interesting opportu-
nities in the context of operational oceanography and ocean 
forecasting systems. Operational forecasting systems are 
indeed not only based on observational data but also on 
algorithms. These algorithms gather and encode our under-
standing of physical systems and their dynamics, as well as 
of observation networks and associated uncertainties. They 
also reflect our collective knowledge on the relevant criteria 
for evaluating ocean data products. As in many activities re-
lying on algorithms, the emergence of artificial intelligence, 
and especially of deep learning, opens a number of new pos-
sibilities, and is therefore the subject of growing interest in 
our community. 

The ML generally refers to all the methods used to build 
algorithms whose components and parameters are not 
defined a priori but are trained according to a given ob-
jective. This field encompasses a large number of different 
methods, algorithms, and training strategies. It is a wide 
and fast-moving research field that includes, but is not re-
stricted to, deep learning. ML is also intimately linked to a 
technological landscape and a software ecosystem in con-
stant evolution. These technologies allow researchers and 
engineers to assemble complex algorithms from elementary 
building blocks in a very versatile and modular way, with in-
teresting performances compared to state-of-the-art meth-
ods in many disciplines.  

Applications of artificial intelligence are currently in vogue 
but, beyond the hype, artificial intelligence and machine 
learning can help us to overcome some of the current limita-
tions of ocean forecasting systems. Ocean models and data 
assimilation methods, which are the scientific underpinning 
of current ocean forecasting systems, are indeed facing im-
portant challenges. Performing large ensemble simulations 
with full ocean models at increasingly fine spatial resolu-
tion is becoming more and more difficult computationally. 
We still do not know how to fully exploit hybrid computing 
architectures in our systems. We do not have a robust and 
plug-and-play framework to adapt their complexity to new 
custom applications. Although they are constantly being 
improved, our systems are also becoming increasingly dif-
ficult to modify and maintain. As developed in the following 
subsections, AI and ML may well help us to overcome these 
limitations and may even deeply impact on the structure of 
our operational systems. 

12.6.1.	 Expected contributions of machine 
learning to ocean forecasting pipelines

Machine learning has long been used in ocean sciences 
and operational oceanography. However, these applications 
have so far mostly been limited to data retrieval algorithms 
upstream of forecasting systems (remote sensing, quality 
control), or to data processing and analysis in downstream 
applications (data mining, data fusion). In this context, ML 
algorithms have been essentially seen as black boxes with-
out much physical basis. This perception is fundamental-
ly renewed with the emergence of physics based machine 
learning and differentiable programming, which now allow 
to bridge physical sciences, scientific computing, uncertainty 
quantification, and machine learning (Carleo et al., 2019). 

If we adopt a data-centric viewpoint, ocean forecasting sys-
tems can indeed be described as a succession of independent 
data processing steps in sequential pipelines (see Figure 4.1). 
These pipelines include the collection of past observation-
al data, data-assimilation to reconstruct the current state 
of the ocean, forecasting with a physics-based model, and 
eventually the post-processing and dissemination to users. 
Data is being processed with algorithms at each step of the 
pipelines. It is now obvious that modern machine learning 
has the potential to impact each step of the data-processing 
pipelines of operational oceanography and ocean forecast-
ing systems.

As mentioned above, many applications can be identified 
upstream or downstream of the core engines of ocean fore-
casting systems. Typical applications of ML upstream of core 
engines include, for instance, algorithms for alleviating ob-
servational noise, for retrieving parameters (Malmgren-Han-
sen, 2021), or for data quality control (Castelão, 2021). ML can 
thus be used for detecting outliers in Argo profiles (Maze et 
al., 2017). The range of possible downstream uses of core 
forecasting engines is even wider. ML is here expected to help 
design tailored services addressing key challenges (Persello 
et al., 2022), such as improving the prediction of Lagrangian 
drift or detecting anomalous extreme events. 

However, what is probably more difficult to perceive is how 
machine learning may soon affect the core engine of ocean 
forecasting systems, and eventually all the services to users. 
Machine learning and differentiable programming are in-
deed opening many opportunities in computational fluid dy-

12.6. 
Opportunities of artificial intelligence for ocean forecasting systems
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namics (Vinuesa and Brunton, 2021), while deeply renewing 
inverse methods in many areas (Cranmer et al., 2020). These 
recent advances could be leveraged for improving ocean 
models, e.g. for better accounting for unresolved processes 
(Brunton et al., 2020; Zanna and Bolton, 2021). They could 
also help improve data assimilation schemes (Bonavita and 
Laloyaux, 2020), or even possibly replace full inversion pipe-
lines (Fablet et al., 2021). 

These recent advances open the possibility to design and 
train our core forecasting engines in such a way that their 
complexity and performance could be optimised for specific 
applications, ultimately improving our ability to meet the di-
versity of user needs.

12.6.2.	 Designing fully trainable ocean 
forecasting systems core engines

The core engines of current ocean forecasting systems are 
based on two types of objects that are still quite indepen-
dent, namely ocean circulation models and data assimilation 
methods. Ocean models, data assimilation methods, and 
their implementation in forecasting systems are being con-
tinuously improved. But our core forecasting engines are still 
rather static in their design and structure, due to techno-
logical, organisational and historical reasons. For instance, 
ocean models are generally developed without taking into 
account how they will be implemented with data assimila-
tion. As such, there is no guarantee of the optimality of the 
overall design of our systems and its fit for purpose in spe-
cific contexts. 

Recent developments at the interface of machine learning 
and scientific computing could open the possibility of opti-
mising the design of our core prediction engines according 
to predefined objectives. Indeed, beyond the improvements 
of specific components of ocean models or data assimila-
tion schemes, the real benefit to be expected from machine 
learning in forecasting systems is the ability to optimise 
entire pipelines with end-to-end strategies. The term end-
to-end here refers to the ability to optimise components of 
processing pipelines based on metrics measuring the per-
formance of the entire pipeline. End-to-end strategies may 
eventually allow the design of fit for purpose and user-cen-
tric processing chains and products. 

There are obviously technological conditions to realise this 
potential. Integrating trainable components in core forecast-
ing engines is indeed greatly facilitated if these engines are 
already composed of independent modules with robust and 
stable interfaces. It is therefore necessary a gradual evo-
lution to make the system more modular and composable. 
Moreover, if we want to take advantage of end-to-end strat-
egies, the core engines should be fully differentiable. This 
would allow to back-propagate a misfit in the prediction into 

an increment in the parameters of the engine. This is only 
possible if the core engine is written in a high-level differen-
tiable language or programming framework.

Such prerequisites may at first appear daunting, but a grad-
ual evolution towards modular, composable, and differentia-
ble core engines would also have important side benefits. 
First, this effort to redesign our core engines, may actually 
provide a viable strategy for exploiting upcoming comput-
ing architectures, starting from GPUs (Kochkov et al., 2021). 
It may also simplify the maintenance of our engines, as for 
instance the development of adjoint models (Hatfield et al., 
2021), therefore speeding up the transfer from research to 
operation (R2O). Another benefit is also the built-in treat-
ment of uncertainties, thanks to recent advances in probabi-
listic programming (van de Meent et al., 2021) and Bayesian 
Machine Learning 🔗6.  

12.6.3.	 Towards user-centric, ocean digital 
twins leveraging lightweight emulators

Looking further ahead, it can be guessed what future digital 
twins of the ocean will eventually look like. The integration 
of AI components may indeed gradually change the under-
lying paradigm of ocean forecasting systems. While current 
systems essentially implement “single-core engines” with a 
predefined level of complexity, future systems may be based 
on collections of core engines, tailored to the specific needs 
of particular users. These tailored core engines would in-
stantiate core methods and building blocks in a versatile and 
user-centric way, providing fit for purpose tools and prod-
ucts to users.

Whatever form digital twins will eventually take, a key method-
ology will be the ability to train emulators of existing systems 
at reduced costs and with controlled complexity. As described 
above, a gradual evolution of our core forecasting engines will 
be needed for leveraging the full potential of AI and ML. This 
transition may in particular leverage DDEs. They provide ap-
proximations of pre-existing algorithms (Kasim et al., 2021) and 
can be integrated in data assimilation schemes (Nonnenmacher 
and Greenberg, 2021). As such, DDEs offer a good solution for 
building upon existing expertise and tools, while benefiting 
from the pace of scientific and technological advances in AI. 

6.   https://jorisbaan.nl/2021/03/02/introduction-to-bayes-
ian-deep-learning.html 
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Palmer et al. (2008) used “seamless” to refer to predictions 
across the range of weather and climate time scales, e.g. 
ranging from forecast in days to projections in decades. The 
WMO, in its document “Seamless prediction of the Earth 
system: from minutes to months” (WMO, 2015), further de-
veloped this concept, with a main focus on the weather 
component but also starting to consider its importance for 
the ocean. Then, within EuroGOOS this concept has been ex-
panded to promote next generation of ocean services able 
to seamlessly span spatially from global ocean to coastal 
areas and estuaries as a continuum with high resolution in-
formation (She et al., 2021). To achieve the objectives of the 
seamless approach, numerical ocean models need to evolve 
(Chassignet and Xu, 2021; Fox-Kemper et al., 2019) towards:

•	 Use of nested and regional downscaling simulations, 
by means of high-resolution spatial grid spacing or us-
ing variable-resolution and multi-scale modelling;
•	 New parameterizations and improvement of the ex-
isting ones (e.g. air-sea parameterization, turbulence 
and mixing, internal tides, vertical convection, coastal 
estuaries interface with open ocean);
•	 More direct simulation of sea level changes and tides.

Seamless is also connected to coupling as global coupled 
ocean-atmosphere-land-ice modelling systems are used 
to perform climate change projections and studies, from 
decadal to seasonal timescales (Hewitt et al., 2017). The 
overall advancements of numerics in ocean dynamics, bio-
geochemistry, weather modelling, and hydrology open new 
opportunities for coupled systems to address predictions on 
short-range timescales from regional to coastal scales.

In order to establish a seamless marine information service, 
integrated and unified ocean observing systems and seam-
less unified modelling and forecasting systems should be 
developed. Integrated ocean observing implies that ocean 
observations made by multiple sectors for all subsystems 
with multiple means - remote sensing, robotics, and in-situ 

- are integrated, while monitoring schemes and data man-
agement are designed in an unified way, so that the observa-
tions, after being integrated with the seamless models, will 
be able to fit users’ purposes. Furthermore, ocean observing 
should be cost effective and sustainable.

The seamless models can be based on mathematical equa-
tions or statistical and AI algorithms, which simulate or em-
ulate marine physical-chemical-geological-biological sys-
tems. There are still significant gaps in current forecasting 
capacity to reach seamless predictability. The development 
of a seamless modelling capacity will be discussed in the 
next subsections from three aspects: space, time, and sys-
tem of systems. The seamless ocean earth system prediction 
models should be based on UOMs and including atmospher-
ic models. Development of UOMs has been identified as one 
of the four EuroGOOS research priorities (She et al., 2016). 

12.7.1.	Optimal use of modelling workforce and 
model consolidation 

A seamless UOM modelling framework should be developed to 
leverage global efforts to enable joint code development. One 
notable feature of the ocean modelling community is the great 
diversity of the models but the very limited research workforce 
for each model. An incomplete survey of ocean circulation 
modelling by EuroGOOS (🔗7) showed that EU countries use 
32 ocean models for operational and/or ocean climate model-
ling, among which 24 were developed in the EU and 8 from the 
US. Twenty ocean circulation models have been used in Eu-
rope for operational forecasting (Capet et al., 2020). In the US, 
at least ten ocean models are currently used for operational 
forecasts. If this count would be extended to ocean circulation 
models developed and used in other countries (i.e. Australia, 
Canada, China, and Japan) the number of ocean models in use 
could be huge. It is well-known that a significant workforce 
is needed to keep an ocean model at the state-of-the-art. 

7.  https://eurogoos.eu/models/

12.7. 
Seamless prediction 

In conclusion, it appears that we are at the beginning of an excit-
ing phase in the evolution of ocean forecasting systems, which 
could deeply transform the entire service offered to users. The 
integration of AI in ocean forecasting systems will require a 
gradual but profound change of the algorithms that constitute 
their underpinnings. This transition will take advantage of the 

wealth of expertise on ocean physics, observing networks, and 
user needs available in ocean forecasting centres. It will also 
require developing and nurturing new collaborations with the 
broader AI technological and scientific community, and benefit 
from the adoption of open science practices.
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However, each ocean modelling group has only a very limited 
workforce for ocean model development. Even though joint or 
community model development has improved the situation for 
a small number of models, the number of ocean model devel-
opers is still far from sufficient for most of the models. There-
fore, it is necessary to optimise the use of ocean modelling 
workforces focusing only on a limited number of models. The 
future UOMs can be made so that one model would have op-
tions with multiple coordinates and parameterizations, hence 
emulating different model behaviours. 

Optimal use of modelling workforce should be coordinated 
in national, regional (such as the GRAs), and global scales 
so that the UOMs in different scales can be well addressed 
and consolidated with a critical mass of model developers. 
However, it is not always possible to have a critical mass of 
model developers at the national level, as only countries 
with strong national investment in ocean science have such 
a capacity. It is easier to reach a critical mass at the regional 
or global levels. In fact, most of the effective modelling co-
operation is carried out at regional level. The global co-de-
velopment of models is probably less active due to both ad-
ministrative and political barriers. It is highly recommended 
to strengthen global collaboration on UOM development.

12.7.2.	 Development of seamless UOM for 
multiple temporal scales 

Predictability in an ocean earth system has a multi-scale feature, 
relating to the spatiotemporal scales of its subsystems as well as 
their interactions, which can be divided into forcing-based pre-
dictability, self-constrained subsystem predictability, and cou-
pled system predictability. For atmospheric systems, according 
to the high-resolution global forecast model experiments, the 
upper limit of the self-constrained predictability for determinis-
tic prediction is two weeks. Longer-scale predictability is related 
to blocking events with time scales ranging from weeks to years, 
e.g. MJO, PNA, NAO, AO, ENSO, QBO, which relies on interaction 
between atmosphere and ocean-ice systems and solar radiation. 
It is well-known that the surface ocean is mainly dominated by 
forcing-based predictability, i.e. variability of waves, ice and sea 
level in synoptic scale are largely determined by weather condi-
tions. Subsurface ocean and sea ice can store forcing signals and 
release them to affect the atmosphere at a “slower” pace. This 
generates longer predictability in the coupled ocean-ice-atmo-
spheric system. MJO, PNA, NAO, AO, and ENSO are all phenomena 
generated in such a coupled system. As stated by Brian Hoskins 
in the WMO Lecture 20118: “The background provided by the lon-
ger time-scales and by external conditions, and the phenomena 
that occur on each range of time-scales in the seamless weath-
er-climate prediction problem, give the promise of some predic-
tive power on all time-scales”. 

8.   https://public.wmo.int/en/bulletin/predictability-be-
yond-deterministic-limit 

Most of these long-scale processes can still not be predicted 
successfully by current coupled-system models. UOM devel-
opment is a key to improve the earth system predictability 
in the current stage as it will provide insight knowledge, as 
well as simulate the processes that the ocean-ice system fil-
ters, absorbs, and transfers the atmospheric signals into a 
slow-motion signal and then feeds back to the atmosphere. 

To reach breakthroughs in longer-scale predictability, it is im-
portant to consider that: i) ocean earth system forecast is a 
probability prediction problem; ii) multi-model ensemble has 
shown expanded atmospheric forecasting skills than the de-
terministic prediction; iii) shorter-scale phenomena, although 
constrained by longer-scale ones, are also a statistical forc-
ing to the longer-scale, thus should not be treated only as 
noise; and iv) solar radiation, volcano eruption, and changes 
of pollutants in both ocean and atmosphere can affect the 
intrinsic signals in the system and then should be included. 
UOM development should address these issues. 

12.7.3.	 Geographic configurations and 
seamless UOM in space and in a marine system 
of systems

For a coordinated UOM development, proper geographic 
scales should be defined as well, so that both scientific re-
quirements and collaboration needs are met. Three types of 
forecast UOMs can be expected: i) global-scale coupled UOMs 
aiming at longer-scale prediction of the earth system, which 
is not necessarily high resolution but should be able to use 
short-scale as a statistical forcing; ii) global and regional scale 
coupled models aiming at produce refined forecast within a 
“foreseeable” time, e.g. a month, for which high resolution will 
be important; and iii) for “touchable” spatiotemporal scale, i.e. 
inland water-estuary-coastal-regional sea in space and a few 
days in time. It should also be noted that the smaller-scale 
UOMs can be easily applied to long-term forecast applications 
when forecasts at boundaries are well defined. 

The coupled UOMs will mainly be developed for global and 
regional scale to address longer scales from months to sea-
sons. For the regional scale coupled UOMs, geographic cov-
erage should be sufficiently large to reflect impacts of the 
atmosphere-ocean coupling. The resolution of the coupled 
UOMs can be a few kilometres (mesoscale resolving) for global 
scale and hundreds to thousands metres for regional scale to 
resolve sub-mesoscale eddies and narrow straits connecting 
sea basins. Therefore for regional scale coupled UOMs, flex-
ible grid and high-performance computing are two basic re-
quirements. For one regional scale there might be more than 
one coupled UOM.  

High resolution is required to provide a seamless prediction 
in space. For example, narrow straits connecting two large 
water bodies and archipelago water areas may need a res-

CHAPTER 12. CHALLENGES AND FUTURE PERSPECTIVES IN OCEAN PREDICTION 359

https://public.wmo.int/en/bulletin/predictability-beyond-deterministic-limit
https://public.wmo.int/en/bulletin/predictability-beyond-deterministic-limit


olution of 100-1000 m; inland waters-estuary-coastal-open 
sea continuum, essential for pollutant transport modelling, 
nutrient cycle, and carbon cycle modelling, needs also a 
similar model resolution. An even higher resolution (10-100 
m) may be required when dealing with river inputs to the 
sea, impact of flooding, hydropower, barriers to pollutant 
transport, coastal inundation, compound flooding-surge 
events, and port management. Hence, a spatial seamless 
UOM should have flexible grids, either unstructured grid or 
dynamic two-way nested grid.

12.7.4.	 Evolution in short-, mid- and long-term 
perspectives

In short- to mid-term (3-5 years) perspectives, the objective 
would be to develop a UOM framework and continuous im-
provement of prediction skills of the marine earth system 
models with a forecast range of 10 days to 1 month. The re-
search should focus on: (i) establishing UOM global coopera-
tion framework to harmonise, coordinate, and further evolve 
existing UOM development work; (ii) designing the UOM con-
cept, framework, and multiple configurations for different 
scales, considering international cooperation and sharing 
of best practices, optimal use of workforce, critical mass for 

UOM development, code portability, relocatability, scalabili-
ty, flexibility, resolvability, and reducing the redundancy of 
models; (iii) improving model process description, so that 
each UOM sub-model can effectively model major features 
in the subsystem; (iv) investigate possibility for establishing 
forecasting capacity in emerging modelling areas, such as 
SPM, marine litter, underwater noise, and fisheries, and also 
develop prototype pre-operational models in these areas; v) 
improving high-performance computing through code mod-
ernization; (vi) improving the UOM subsystem coupling; and 
(vii) develop high-resolution models with flexible grids and 
interfaces with basin and global scale models, as well as re-
solving coastal processes for downstream applications  

In the long-term (10 years), the objective is to improve pre-
diction skills in time scales from months to seasons for cli-
mate, physical, and biogeochemical systems, establish and 
improve forecasting capacity in emerging areas such as SPM, 
marine litter, underwater noise, and fisheries. For the ESP in 
seasonal and longer scales, coupled UOMs including atmo-
sphere-ocean-wave-ice coupling and ocean-optics-SPM-bio-
geochemical coupling will be developed for ensemble pre-
diction. UOM code will also be optimised for efficient hybrid 
parallel computing. 

12.8. 
Operational forecasting and scenarios in a digital ocean 
A Digital Twin of the Ocean (DTO) is a highly accurate model 
of the ocean to monitor and predict environmental change, 
human impact, and vulnerability, with the support of an 
openly accessible and interoperable dataspace that can 
function as a central hub for informed decision making (Fig-
ure 12.3) (see for example 🔗9 ).  Such an information sys-
tem consists of one or more digital replicas of the state and 
temporal evolution of the oceanic system constrained by the 
available observations and the laws of physics, making im-
perative to integrate a set of models or software that pairs 
the digital world with physical assets, and to feed this set 
with information from sensors. 

A DTO aims to deliver a holistic and cost-effective solution 
for the integration of all information sources related to seas 
and oceans, like in situ-data and satellite information com-
bined with IoT techniques, Citizen science, state-of-the-art 

9.  https://digitaltwinocean.mercator-ocean.eu/

ocean modelling together with AI and HPC resources into a 
digital, consistent, high-resolution, multi-dimensional, and 
near real-time representation of the ocean. This will result 
in a shared capacity to access, manipulate, analyse, and vi-
sualise marine information. The knowledge generated by 
the DTO platform will empower scientists, citizens, govern-
ments, and industries to collectively share the responsibility 
to monitor, preserve and enhance marine and coastal hab-
itats, while promoting action and sustainable measures in 
the framework of the blue economy (tourism, fishing, aqua-
culture, transport, renewable energy, etc.), contributing to a 
healthy and productive ocean.
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Figure 12.3.	 Schematic representation of Digital Twin of the Ocean concept.

12.8.1.	 Construction of an open DTO  
service platform

To properly address the construction of a digital twin, break-
throughs are needed in various aspects of the digital twin 
information system, including information completeness 
and quality, information access and intervention, as well as 
the underlying supporting infrastructure, tools, and services. 
The operational pilot of DTO, under development at Europe-
an level, will encompass the production of a new quality of 
information, incorporating human systems in the prediction 
problem and leveraging advances in information theory and 
digital technologies. Ensembles of simulations combining 
models from different disciplines, informed by spatial cor-
relations determined from high-resolution observations and 
by data-driven learning of unknown processes and missing 
constraints, will enable the DTO to reduce uncertainty in esti-
mation and forecasting of ocean states, changes, and impacts. 

Enhancing information quality requires a step change in 
computational complexity. This means adequate infrastruc-
ture including support of very high computing throughputs, 
concurrency, and extreme-scale hardware. However, it is im-
portant to conceal this complexity so that users can run and 
configure involved workflows and access the information 
but without requiring expert intervention. In addition, the 
underlying models and data need to be scientifically sound. 

This will require a multi-layered software framework where 
tasks like simulations, observational data ingestion, and 
post-processing are treated as objects that are executed on 
federated computing infrastructures, feed data into virtual 
data repositories with standardised metadata, and from which 
a heavily machine-learning-based toolkit extracts information 
that can be manipulated in any possible way. The result should 
be the provision of on-demand, conveniently accessible mod-
elling and simulation products, data and processes or MSaaS.
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Figure 12.4.	 DTO Architecture.

12.8.2.	 Underlying architecture

The multi-layered framework enabling this digital twin ocean 
pilot operational service comprises 3 major interrelated 
structural elements (Figure 12.4): 

•	 A DTO data access layer that mixes results and tools 
from ongoing projects and existing infrastructures with 
new developments targeting data ingestion, and data 
harmonising into a Data lake for subsequent use in the 
DTO engine; 

•	 A DTO engine comprising a set of modelling capabil-
ities, including on-demand modelling and what-if sce-
nario modelling that fill the observational gaps in space 
and time in a physically consistent way, and observa-
tion-driven learning of unknown processes and missing 

constraints, which will enable to reduce uncertainty in 
estimation and forecasting; 

•	 A DTO interactive service layer supplying tools, li-
braries, and interfaces to simplify running and config-
uration of workflows, as well as access to information, 
including its analysis and visualisation. 
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As described in Chapter 4, PQ assessment is an essential ser-
vice component for any operational oceanographic centre. In 
the case of climate and short-term forecasting services, val-
idation of ocean models (physical and biogeochemical) is a 
crucial issue. Despite the continuous progress of the services 
towards providing regularly updated quality information, there 
are still gaps and deficiencies in the operational capacity to 
assess model solutions. It is still challenging to properly quan-
tify the uncertainties in real time and in a way that is directly 
understandable and useful to the users. Capet et al. (2020), in 
their review of the operational modelling capacity in European 
Seas, pointed out that only 20% of operational coastal model 
services provide a dynamic uncertainty together with the fore-
cast products. This deficit in terms of operational model vali-
dation processes may be mainly linked to the lack of real-time 
access to a local ocean observation network. 

This limitation seems to be partially alleviated within core 
services that have a regional or global focus. In these ser-
vices, the PQ processes seems to be favoured by: 1) a wid-
er scope (services dealing not only with forecast models but 
also with the monitoring component and observational data 
products); 2) a more integrated data use (for instance through 
data assimilation in ocean analysis and reanalysis products); 
and 3) wider spatial coverages (allowing the use of a higher 
number of observational data sources to validate model pre-
dictions). The Copernicus Marine Service is one of these core 
comprehensive services and in recent years has built some 
standards for model assessments and delivery of PQ infor-
mation to end-users. This service, and its evolution roadmap 
in terms of PQ processes, can illustrate the main expectations 
for the future evolution of validation and quality information 
on operational oceanography products. 

As described in Sotillo et al. (2021), the Copernicus Marine 
Service ensures:

•	 Standardised processes to assess each product’s sci-
entific quality against appropriate metrics;
•	 Product quality information regularly updated and avail-
able from a central website, called the “PQ-Dashboard” 
(https://pqd.mercator-ocean.fr/);
•	 Specific PQ documentation delivered with each Coperni-
cus Marine Service product, completed by regularly updated 
quality summaries, including fit for purpose information, 
and evolving towards peer reviewed technical reports.

From this baseline, the Copernicus Marine Service Prod-
uct Quality Strategic Plan 🔗10, identified a list of developments, 
challenges and opportunities foreseen for the next Coperni-
cus-2 service phase period (2022-2028). The availability of an 
increasing number of ocean observations should enable and 
support new developments, and eventually improve the infor-
mation quality associated with oceanographic products. The 
three main working lines  along which the plan will unfold 
are discussed in the following subsections and shown in Fig-
ure 12.5: future observations, future developments in OO cen-
tres, and future quality information. These lines are the way 
forward for the future development of model validation and 
quality assessment techniques.

12.9.1.	 New observations for improved quality 
assessment

The use of new satellite products (e.g. from next Sentinel 
missions or wide swath altimetry) will enable a significant 
increase of data coverage towards higher resolution, allow-
ing not only a quality increase but also more validation op-
portunities for a wide range of operational oceanography 
products. The continuation of the BGC-Argo and Deep Argo 
missions and networks are crucial for providing quality in-
formation in areas and on variables that are still highly un-
dersampled. The potential extension of Argo coverage to-
wards coastal areas may also be essential for its important 
socio-economic impact and the benefit for coastal model as-
sessments. In that sense, there are some on-going initiatives 
in the framework of R&D Projects (such as the Euro-Argo RISE 
H2020 one) to test Argo on shelf extensions, targeting shal-
lower waters in European marginal seas. 

Additionally, operational oceanography centres should im-
prove the effective use of existing observing products and 
networks through:

•	 Upgrade of PQ processes to properly assess high fre-
quency datasets: PQ metrics are generally computed 
daily. However, currently, and to a greater extent in the 
future, some near real-time (NRT) model product data-
sets that are delivered with higher frequency (i.e. every 
15 minutes) would need a dedicated assessment. 

10.   https://marine.copernicus.eu/about/service-evolu-
tion-strategy 

12.9. 
Quality assessment for intermediate and end users 
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•	 Enhancement of water mass assessment at synoptic 
scales: at present, sampled only partially. To improve 
their characterisation in the upper ocean, it is neces-
sary to extend the use of available observational plat-
forms (i.e. more ship of opportunity measurements, 
thermosalinograph/ferry box data, new glider oppor-
tunities, sea mammals). Below 2000m, water mass dis-
tributions are still poorly understood, and historical 
data do not guarantee the reliability of existing cli-
matologies. Deep floats and deep ocean observations 
also need to be considered to support global predic-
tion assessment.   

•	 Promote the use of data from specific multi-platform 
campaigns (specially in hot spots): regular and periodic 
campaigns in the same waters are necessary for climate 
monitoring and periodic model assessments (i.e. glider 
periodic missions along straits); current measurements 
are also much needed (both Lagrangian and Eulerian 
observations), not only for temperature and salinity.

•	 Ensure easy access to historic observations: there are 
large amounts of data from research surveys that are 
either not available or available only in operational cat-
alogues. These independent data (in the sense of not 
assimilated) can be crucial for assessing model perfor-
mance. A progressive integration of this kind of data will 
be advantageous for forecasters, and its “discovery” is 
foreseen to increase. Access to these sources should be 
automated, data loss reduced, and the investment on 
data collection will be recovered. In the context of Co-
pernicus Marine Service, EMODNET, EuroGOOS alliances 
or other networks, it is crucial for OO centres and data 
providers to connect initiatives and efforts to better in-

tegrate the existing ocean observing systems, as well as 
the new expected instruments/observations.

12.9.2.	 Expected development of quality 
assessment techniques

The use of ensemble data assimilation methods and the ex-
pected increase in the use of prediction systems based on 
model ensembles should significantly improve the quantifica-
tion of model product uncertainty using probabilistic scores, 
the evaluation of error propagation, and of model systematic 
errors and attractors. An increasing number of high-resolution 
observations will be used to characterise model skill at all ob-
served scales, while advanced statistical techniques (such as 
deep learning) should contribute to improve cross-validation 
capabilities between different types of observations, and be-
tween observations and models. 

Errors in the ocean circulation models, in particular on ver-
tical transport and mixing, strongly impact the coupled bio-
geochemical model solutions. Thus, monitoring errors in key 
parameters of the physical forcing should characterise errors 
(their causes) and subsequent impacts in biogeochemical 
solutions. The mixed layer depth variable is a typical exam-
ple of this due to its impact on biogeochemistry processes.

Quality assessment of model downscaling should be eased 
in the future by advances in integrated systems (following 
on the idea of monitoring uncertainties “propagating” along 
the value chain). The added value of downscaling (higher 
resolution with better representation of the ocean process-
es) needs to be assessed through a more systematic com-
parison of global vs. regional and coastal models. To this 
aim, alternative/innovative validation metrics are needed for 

Figure 12.5.	 New observations enable new developments in operational oceanography centres, which will 
also benefit from growing computational resources and advanced AI and big data techniques. This will allow 
significant improvements of the quality information, improving its relevance and its frequency.
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The first operational phase 2014-2021 of the Copernicus Ma-
rine Service has successfully implemented a service chain 
devoted to ocean information, involving committed producers 
throughout Europe, and serving expert users worldwide. The 
Copernicus Marine Service will develop an ambitious 7-year 
plan (Copernicus 2, 2021-2027) with staged implementation 
that answers to increasing user and policy (e.g. EU Green Deal) 
needs. The objective is to fully embrace the capabilities of new 
digital services and implement the next generation of ocean 
monitoring and forecasting for the Blue/White/Green ocean.

Copernicus Marine Service products and services are deliv-
ered by means of state-of-the-art, user-oriented, scientific 
and technical methodologies, which induces openness to 
newly developing ideas and associated capacities. Apart 
from guaranteeing service continuity, the Copernicus Marine 
Service is continuously evolving to ensure that its services 
and products remain state-of-the-art and meet a wide range 

of existing and emerging user and policy needs related to 
all marine and maritime sectors: maritime safety, coastal en-
vironment monitoring, trade and marine navigation, fishery, 
aquaculture, marine renewable energy, marine conservation 
and biodiversity, ocean health, climate and climate adapta-
tion, recreation, education, science and innovation.

The following major improvements of current products, as 
well as new products benefiting from science and technology 
advances, are already planned to ensure an enhanced con-
tinuity of the service, keeping the service at the state-of-art 
and at internationally competitive and fit for purpose stan-
dards, considering the European policies’ priorities (Green 
Deal, Common Fisheries Policy, Marine Strategy Framework 
Directive, and Convention on Biological Diversity):

•	 High resolution monitoring, modelling, and forecast-
ing of the blue ocean with an increase of the horizontal 

12.10. 
Expected future evolution of Copernicus Marine Service 
products and services

model assessment that avoid double penalty when compar-
ing different resolution models (Ebert, 2009). More relevant 
skill scores are needed for forecasting, implementing new 
approaches to validate and inter-compare new physical, and 
biogeochemical model products at very high-resolution.

Finally, there is a growing need to identify and understand 
long-term trends in ocean parameters and their impact at re-
gional to coastal scale. The validation of such signals is chal-
lenging for physical and even more for biogeochemical param-
eters, such as carbon, oxygen, and ocean acidification, which 
are of great interest on both regional and global scales. It is 
crucial to improve the validation methodology and to increase 
the number of reference observations as much as possible.

12.9.3.	 Quality information communication 
improvements

There is an increasing demand for regional fit for purpose 
assessments, especially in coastal areas. The quality infor-
mation content must evolve following users’ needs. The cur-
rent OceanPredict product quality metric monitoring has to 
be complemented with process- (and user-) oriented met-
rics, and better quantification of uncertainties. Probabilis-
tic scores and robustness assessments with multi-product 

(model and observed) intercomparisons should help an-
swer many user requirements. The use of application-ori-
ented metrics, such as Lagrangian drift metrics or “event 
oriented” metrics (e.g. categorical scores based on thresh-
olds) should also be generalised. 

The collaboration among forecasting services to agree on in-
ternational validation standards must continue. Collabora-
tion between forecast services and users should result in the 
introduction of new user-oriented metrics to be considered 
as local case studies and validation “benchmarks”. 

Operational oceanography centres will have to develop both 
high-level summarised quality information and high-resolution 
uncertainty estimates to be delivered alongside the products 
following FAIR guidelines, as initiated by Peng et al. (2021a, 
2021b).

High-level quality summaries, such as product “maturity 
matrices”, will guide users to choose the most appropriate 
product for a given use, while the uncertainty information 
delivered alongside the product will enable the access to tai-
lored product quality information, as a valuable addition to 
many oceanographic applications. 
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resolutions of the current systems by a factor of at least 
3 (e.g. global 1/36°, regional 1/108°). Coupling and inter-
action with waves, sea ice, atmosphere, biogeochemistry, 
and rivers will also be implemented for improved ocean 
forecasts. New high-resolution sea level observations 
from the SWOT wide swath altimeter mission, new ocean 
topography, sea surface temperature, salinity from the 
Sentinel, HPMC, CRISTAL, and CIMR missions will be in-
cluded as observational products. These improvements 
will impact the different Copernicus Marine Service areas 
and their key applications: maritime security and safety, 
maritime transport, pollution monitoring and offshore 
operations, and coastal zone monitoring and forecasting.

•	 Probabilistic forecasting and extended (1-month) 
forecasts based on model ensembles, allowing a better 
characterization of model uncertainties in analyses and 
forecast. Data assimilation techniques will evolve to-
ward more multivariate schemes to constrain in a more 
extended and coherent way the different inanimate 
components of the marine environment (physics, sea 
ice, and biogeochemistry). Coupled ocean/atmosphere 
data assimilation will also be implemented. Probabilis-
tic forecasts will be instrumental for early warning sys-
tems, and to support decision-making based on opera-
tional products by better characterising the confidence 
level associated with the provided information.

•	 Reanalyses of the 20th century physical and biogeo-
chemical data for the global ocean and the European 
regional seas, assimilating historical in-situ obser-
vations (e.g. sea surface temperature and tige gauges 
mainly for the first half of the century and temperature 
and salinity profiles from 1950 onwards). The purpose 
of these reanalyses is to better assess the past evolu-
tion of the ocean in response to climate change and to 
better monitor Essential Ocean Variables and Essential 
Climate Variables related to the ocean.

•	 Step changes in Arctic Ocean monitoring, modelling, 
and forecasting through upgrade in sea-ice models, 
improved coupling with the atmosphere and hydrology 
(river discharge and nutrient loads), higher-resolution, 
extended forecasting ranges from a week to a month, 
and ensemble forecasting for an improved characteriza-
tion of forecasting uncertainties. Provision of icebergs’ 
forecasts will complement the information produced 
for ice services. Improved satellite products on sea-ice 
detection and a pan-Arctic ice chart will complete the 
offer. These evolutions will address user needs regard-
ing maritime transport (e.g. ship routine) and marine 
safety in sea-ice and iceberg infested regions, marine 
resources (fisheries and conservation) and climate 
change impact in the Arctic.

•	 Air/sea fluxes of CO2 monitoring and modelling, in-
cluding advanced modelling/data assimilation systems 
at global and regional scales as well as including er-
ror estimations. Foreseen developments also include 
processing and quality control of novel in-situ obser-
vations from the BGC Argo array and improvement of 
observation-based products derived from Neural Net-
work methods. These evolutions are required by the Co-
pernicus anthropogenic CO2 service as well as for blue 
carbon monitoring.

•	 Coastal zone monitoring and forecasting with im-
proved capacities to link and co-production between 
coastal systems with Copernicus Marine Service up-
stream systems. Consistency and river-ocean conti-
nuity will be ensured by using standardised methods 
to couple hydrological models (for river run-offs) with 
global, regional, and coastal ocean models. Time-series 
(past, present, forecasts) of standardised modelled riv-
er discharges of freshwater, nutrients, particulate, and 
dissolved matter will be provided. Coastal zone mon-
itoring will also be enhanced through satellite obser-
vations – based on Sentinel (especially S1, S2, S3, and 
S6) and other missions - for nearshore bathymetry and 
shoreline position and their evolution, high-resolution 
winds, spectral wave information, detection of plastic 
debris, monitoring of marine litter, ecosystems, water 
quality, and sea surface temperature. Given the huge 
social, economic, and biological value of coastal zones, 
these improvements will contribute to a wide range of 
applications (coastal zone management, climate adap-
tation, coastal modelling, aquaculture and fisheries, 
navigation and shipping, marine renewable energy, oil 
spill management and search and rescue), supporting 
various policies and resilience to climate change.

•	 Marine biology monitoring and forecasting with ma-
jor improvement in numerical models to represent 
processes (e.g. benthic/pelagic coupling, riverine in-
puts) increasing accuracy, advanced data assimilation 
techniques (e.g. combining state and parameter esti-
mation), and new modules linking optical properties 
in the near-surface ocean to biomass to better couple 
ocean colour and subsurface data from in-situ such as 
BGC Argo. End-to-end ecosystem modelling will also be 
included to link along the food web low trophic levels 
(e.g. plankton) to mid-trophic levels (e.g. micronek-
ton), and to high-trophic levels (e.g. predator fishes 
and marine mammals). Marine biology monitoring will 
also be enhanced through the improvement of gather-
ing, processing, quality control, and characterization of 
biogeochemical and marine biology in-situ (e.g. optical 
and acoustic sensors) and satellite (e.g. S2, S3 and hy-
perspectral) observations in open and coastal oceans. 
These products will support international and European 
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At the beginning of the third millennium, ocean science was 
largely competent for diagnosing problems. However, its 
ability to offer solutions of direct relevance to sustainable 
development requires a massive upgrade. 11 12

The world needed a large-scale and adequately resourced 
campaign to transform ocean science empowering and engag-
ing stakeholders across disciplines, geographies, generations, 
and genders, and of sufficiently long duration to deliver the 
lasting change that is required. In 2016, the IOC of UNESCO 
(🔗13) initiated a concept for this campaign. In December 2017, 
this work culminated in the proclamation by the 72nd Session of 
the UNGA of the UN Decade of Ocean Science for Sustainable 
Development 2021-2030 (referred to as ‘the Ocean Decade’). 
UNGA called on the IOC to prepare an Implementation Plan for 
the Ocean Decade in consultation with Member States, United 
Nations partners, and diverse stakeholder groups.

In 2021, the United Nations launched the Ocean Decade (2021-
2030) (🔗14) whose aim is to ‘support efforts to reverse the 

11.  https://marine.copernicus.eu/sites/default/files/me-
dia/pdf/2021-09/CMEMS%20Service_evolution_strategy_RD_
priorities_v5-June-2021.pdf 
12.   http://marine.copernicus.eu/science-learning/ser-
vice-evolution/about-stac 
13.  https://ioc.unesco.org/
14.  https://www.oceandecade.org

cycle of decline in ocean health and gather ocean stakehold-
ers worldwide behind a common framework that will ensure 
ocean science can fully support countries in creating improved 
conditions for sustainable development of the Ocean’. In this 
framework, the IOC plays an important role: it coordinates the 
Decade’s design and preparation, identifies programmatic 
contributions, and implements the Decade.

The vision of the Ocean Decade is ‘the science we need for 
the ocean we want’. The mission is ‘to catalyse transforma-
tive ocean science solutions for sustainable development, 
connecting people and our ocean’.

Seven outcomes describe what should be the ‘ocean we 
want’ at the end of the Ocean Decade:

1. A clean ocean where sources of pollution are identi-
fied and reduced or removed.
2. A healthy and resilient ocean where marine ecosystems 
are understood, protected, restored and managed.
3. A productive ocean supporting sustainable food sup-
ply and a sustainable ocean economy.
4. A predicted ocean where society understands and can 
respond to changing ocean conditions.
5. A safe ocean where life and livelihoods are protected 
from ocean-related hazards.
6. An accessible ocean with open and equitable access to 
data, information and technology and innovation.

12.11.The United Nations Decade of Ocean Science for 
Sustainable Development

Union objectives in terms of biodiversity, development 
of sustainable food resources, water quality, assessment 
of blue carbon in the overall carbon stake accounting.

•	 Long-term projections of the marine environment (both 
physics, biogeochemistry, and marine ecosystems) under 
climate change from global to regional scales (downscal-
ing of climate scenarios), and associated consequences 
for main stocks of exploited fishes. These products will 
support climate assessments for decision-making on 
adaptation  and mitigation of climate risks (e.g. coastal 
floods, surges, etc.).

•	 Enhanced digital services with online cloud processing 
capabilities for manipulating and processing data with 
advanced analytics and scientific computing software (e.g. 

artificial intelligence toolboxes), access to Sentinel Level 
1&2 data, marine data (e.g. from EMODnet, SAF, etc.), and 
connection to HPC computing nodes. This will consoli-
date the Copernicus Marine Service as a one-stop shop 
for operational and digital ocean services.

A document 🔗11 presenting the Copernicus Marine Service 
Evolution Strategy for R&D priorities has been prepared by 
its STAC 🔗12 and reviewed by MOI. This document details the 
expected future products and services by Copernicus Marine 
Service and the required developments. It is a living doc-
ument, as it is updated periodically according to feedback 
from users and policy needs, the status of scientific devel-
opments achieved within and outside the Copernicus Marine 
Service community, and to the high-level Copernicus Marine 
Service evolution strategy. 
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7. An inspiring and engaging ocean where society un-
derstands and values the ocean in relation to human 
wellbeing and sustainable development.

The decade will be implemented via “Actions”, which are 
the tangible initiatives that will be carried out across the 
globe over the next ten years to fulfil the Ocean Decade 
vision. They will be implemented by a wide range of propo-
nents, including research institutes and universities, gov-
ernments, UN agencies, intergovernmental organisations, 
other international and regional organisations, business 
and industry, philanthropic and corporate foundations, 
NGOs, educators, community groups or individuals. Actions 
can be implemented by promoting Activities, Contributions, 
specific Programs or Projects. 

The Ocean Decade will involve a large number of partners 
and actors around the world, and hence it cannot be rig-
idly governed. A simple, robust coordination structure will 
manage day-to-day implementation. The DCU, to be locat-
ed at the IOC Secretariat, will be the central hub for the 
coordination of Ocean Decade activities. Governments or 
partners will host a number of Decade Coordination Of-
fices and DCCs – referred to as decentralised coordination 
structures – that will be located in different regions around 
the world. These structures will help to coordinate efforts 
between national, regional, and global initiatives, share 
knowledge and tools developed through the Ocean Decade, 
create links between potential Decade partners, and moni-
tor and report on the impact of the Decade. One DCC will be 
devoted to Ocean Prediction 🔗15.

The following subsections describe some examples of Ac-
tions and Collaborative Centres that will be linked to OOFS.

12.11.1.	 The Decade Collaborative Centre for 
Ocean Prediction

DCCs serve as the main interface between Decade Actions 
and the DCU at the IOC-UNESCO Secretariat. MOI has been 
selected to host the DCC for Ocean Prediction. It will provide:

•	 A communication and collaboration hub bringing to-
gether Decade programmes with ocean prediction activi-
ties, institutes, and organisations outside of the Decade;

•	 A global technical and organisational structure to 
establish a pilot for a Global Ocean Data Processing, 
Modelling, and Forecasting System, building on the in-
novations generated by the Decade programmes and 
other national, regional, and international partners.

15.   https://www.oceandecade.org/news/decade-collabo-
rative-centres-to-provide-focused-regional-and-themat-
ic-support-for-decade-actions/

The DCC for Ocean Prediction will ensure that the efforts of 
multiple Decade programmes combine to meet Decade ob-
jectives and that innovations are integrated into operational 
ocean forecasting systems through a harmonised global net-
work with shared information and services.

12.11.2.	CoastPredict Program

The University of Bologna (Italy) was selected for another the-
matic DCC which will focus on coastal resilience in a changing 
climate. The same University is also leading the CoastPredict 
Programme that was endorsed as a Decade Programme of 
Ocean Science in June 2021. 

CoastPredict is one of the 3 Programmes co-designed with 
GOOS, and it has the purpose of revolutionising the global 
coastal ocean observing and forecasting sector (🔗16). The 
high-level objectives of CoastPredict are:

1.	A predicted global coastal ocean;
2.	The upgrade to a fit for purpose oceanographic infor-
mation infrastructure;
3.	Co-design and implementation of an integrated coastal 
ocean observing and forecasting system adhering to best 
practices and standards, designed as a global framework, 
and implemented locally.

The Global Coastal Ocean is a concept central to the trans-
formative science pursued by CoastPredict. CoastPredict 
will re-define the concept of the Global Coastal Ocean that 
was firstly described as follows by Robinson and Brink 
(2006; concept developed in volumes 10 to 14 of “The Sea” 
series): ‘the coastal ocean – that area, extending inshore 
from the estuarine mouths to river catchments affected by 
salt waters and offshore from the surf zone to the continen-
tal shelf and slope where waters of continental origins meet 
open ocean currents.’

According to this concept, all coastal ocean regions are an in-
terface area where atmosphere, land, ice, hydrology, coastal 
ecosystems, open ocean, and humans interact on a multi-
plicity of space and time scales that need to be resolved with 
a proper observing and downscaling methodology, including 
the consideration of uncertainties. 

The legacy of CoastPredict will be new science for the observ-
ing systems, and new methods for the development of reli-
able predictions extending as far as possible into the future 
to solve problems co-defined with stakeholders. Additional-
ly, it will enhance the capacity to formulate R2O practices, a 
new set of coastal observing and modelling standards for all. 
This will go hand-in-hand with the organisation and upgrade 
of the basic global ocean information infrastructure for open 

16.  https://www.coastpredict.org/
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and free access to coastal information using standards and 
best practices. 

CoastPredict will capitalise on three previous major interna-
tional initiatives:

1.	GOOS Coastal observation panels (i.e. COOP and  suc-
ceeding PICO). COOP started in 2000 to define a strategy 
for integrated observing and forecasting in the coastal 
areas. One of the main outcomes was the recommenda-
tion that a global network of observations, data com-
munications, data management, and data analysis/fore-
casting should be secured providing economies of scale. 
Another important COOP/PICO outcome was the initial 
definition of common variables to be monitored and 
forecasted in the coastal areas. However, PICO’s work did 
not continue because the international ocean observing 
network was not adequately organised and technology 
was not yet ready for data collection on biogeochemistry, 
biodiversity, and other marine environmental variables. 
Furthermore, the satellite observing system for coastal 
areas was still under development (except for coastal 
ocean colour).

2.	OceanPredict and its COSS-TT. OceanPredict organised 
the global ocean observation uptake for the develop-
ment of global and regional forecasting systems. In ad-
dition, OceanPredict/COSS-TT defined the international 
quality control standards for ocean analyses, reanaly-
ses, and forecasts in the coastal ocean and shelf seas. 
COSS-TT promoted the use of OceanPredict large scale 
products for seamless integration of ocean to coastal 
forecasting, defined the state-of-the-art methodology 
for downscaling, data assimilation, array design in the 
coastal/shelf areas. COSS-TT focuses on advancing sci-
ence in support of coastal forecasting and is one of the 
backbones of CoastPredict. 

3.	The JCOMM. From 2000 to 2019, JCOMM has coordinat-
ed ocean observing networks, in particular the GLOSS 
network for tide gauges and the HF radar network. Fur-
thermore, it started to develop coastal services for wave 
and storm surges by meteorological offices in developing 
countries. Moreover, it has coordinated the development 
of marine environmental emergency services. However, 
such developments led by JCOMM were not fully inte-
grated and connected with the growing oceanographic 
research communities of OceanPredict and COSS-TT. 
While the observing systems and the large-scale ocean 
forecasting systems are now coordinated in GOOS, the 
coastal downscaling and forecasting research develop-
ments are not currently connected to coastal services.

All these activities have been partly disconnected and have 
not produced a global international network bringing to-

gether the fragmented scientific communities for advancing 
the research on the global coastal ocean. New advances that 
make a science-focused programme such as CoastPredict ur-
gent and achievable are: a) operational oceanography is now 
implemented from the global to the regional scales, making 
available open and free data for coastal downscaling; and 
b) major technology advancements have taken place in ob-
serving, from satellites to in-situ robotics to the use of Arti-
ficial Intelligence, which makes the monitoring of the coastal 
ocean practical and feasible. CoastPredict will capitalise on 
this game-changing operational oceanography framework 
and extend to coastal predictive capabilities, including the 
land-water cycle (rivers, underground and transitional wa-
ters) and, for the first time, integrating the coastal ocean, 
through estuaries and rivers, with the “urban ocean” (waters 
within and around coastal cities).

CoastPredict will be implemented through several projects 
focusing on 6 areas:

•	 Focus Area 1 - Integrated Observing and Modelling for 
short term coastal forecasting and early warnings. This 
area will contribute to Ocean Decade Challenge 6 ‘In-
crease community resilience to ocean hazards’: enhance 
multi-hazard early warning services for all geophysical, 
ecological, biological, weather, climate and anthropogen-
ic related ocean and coastal hazards, and mainstream 
community preparedness and resilience (🔗17).  

•	 Focus Area 2 - Future Coastal Ocean climates: Earth 
system observing and modelling. This area will contrib-
ute to Challenge 5 ‘Unlock ocean-based solutions to cli-
mate change’: enhance understanding of the ocean-cli-
mate nexus and generate knowledge and solutions to 
mitigate, adapt and build resilience to the effects of 
climate change across all geographies and at all scales, 
and to improve services including predictions for the 
ocean, climate and weather.

•	 Focus Area 3 - Solutions for Integrated Coastal Man-
agement. This area will contribute to Challenge 8 ‘Create a 
digital representation of the Ocean’: through multi-stake-
holder collaboration, develop a comprehensive digital 
representation of the ocean, including a dynamic ocean 
map, which provides free and open access for exploring, 
discovering, and visualising past, current, and future ocean 
conditions in a manner relevant to diverse stakeholders. 

•	 Focus area 4 - Coastal Ocean and Human Health. This 
area does not match with a specific Decade Challenge but 
it is cross-cutting to all the 10 Challenges. 

17.  https://www.oceandecade.org/challenges/
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•	 Focus Area 5 - Coastal Information integrated in the open 
and free exchange international infrastructure. This area 
will contribute to Challenge 7 ‘Expand the Global Ocean Ob-
serving System’: ensure a sustainable ocean observing sys-
tem across all ocean basins that delivers accessible, timely, 
and actionable data and information to all users. 

•	 Focus Area 6 - Equitable coastal ocean capacity. This 
area will contribute to Challenge 9 ‘Skills, knowledge 
and technology for all’: ensure comprehensive capacity 
development and equitable access to data, informa-
tion, knowledge and technology across all aspects of 
ocean science and for all stakeholders.

12.11.3.	ForeSea Program

ForeSea is hosted by OceanPredict (🔗18), a science programme 
for the coordination and improvement of global and regional 
ocean analysis and forecasting systems. ForeSea aims to build 
the next generation of ocean predictions pursuing a strong co-
ordination of the scientific community and institutes at the 
international level (🔗19). Its main goals are:

•	 To improve the science, efficiency, use, and impact of 
ocean prediction systems; 

•	 To build a seamless ocean information value chain, 
from observations to end users, able to support the 
economy and society.

ForeSea 🔗20 focuses on 2 main themes:

1.	Catalysing transformative ocean prediction science solu-
tions for sustainable development, connecting people and 
ocean prediction;
2.	Increasing impact and relevance: improving science and 
science capacity for the ocean we want.

Such themes are developed through a number of items. In 
theme 1 they span from integrating forecasts of ocean hazards 
with socioeconomic forecasts for supporting policy and man-
agement to maximisation of the impact and value of observa-
tions, from capacity building and training to contribution to a 
digital ocean. In theme 2, they cover from usage of advanced 
ocean prediction technologies in weather and climate predic-
tions to coupled systems (in partnership with CoastPredict), 
from usage of Earth system models (ESM) to development of 
limited ESM areas with coupled components to improve model 
predictability (in collaboration with CoastPredict).

18.  https://oceanpredict.org/
19.  https://oceanpredict.org/foresea/
20.  https://oceanpredict.org/foresea/foresea-planned-activities/ 

Expected outcomes21 are considerable as ForeSea should 
contribute to:

•	 An operational oceanography information value-chain 
where verified/certified information and knowledge are 
exchanged freely enabling all operational oceanograph-
ic components, integrated from the open ocean to the 
coastal areas, to effectively synergize;
•	 A continuously optimised ocean observing system 
integrated from the open ocean to the coastal areas 
that provides maximum information benefit with man-
ageable cost;An ocean information delivery system that 
provides the right information at the right time for facil-
itating marine decisions in support of human safety and 
environmental safety, and an efficient and sustainable 
blue economy;
•	 Improved extended range forecasting capabilities for 
ocean prediction systems;
•	 Better assessment and prediction of the ocean state 
(including reliable uncertainty estimates) and ocean 
impact on forecasts of other earth system components 
(e.g. atmosphere, ice, waves, marine ecosystems, estu-
aries, etc.);
•	 An informed ocean literate society and global economy;
•	 Coordinated capacity building across all elements of 
the operational oceanography value chain to sustain 
production and delivery of ocean prediction;
•	 Demonstrated impact and value of predictions for 
coastal communities;
•	 Effective use of ocean prediction technologies for 
weather and climate predictions.

To facilitate realisation of the expected outcomes, ForeSea 
established through OceanPredict  connections with GOOS, 
WMO, IOC, JCOMM, Argo, GHRSST, GEO, and GEO BluePlanet.

21.   https://oceanpredict.org/foresea/foresea-expect-
ed-outcomes/ 
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PFT Phytoplankton Functional Type

PICO Panel for Integrated Coastal Observations

PISCES Pelagic Interactions Scheme for Carbon and 
Ecosystem Studies

PMOST Parallel Model Of Surge from Typhoon

PNA Pacific-North American Pattern

PO.DAAC Physical Oceanography Distributed Active 
Archive Centre

POC Particulate Organic Carbon

POM Princeton Ocean Model

PQ Product Quality

PSMSL Permanent Service for Mean Sea Level

PSS Practical Salinity Scale

QBO Quasi-Biennial Oscillation

QC Quality Control

QUID Quality Information Document

R/COFS Regional/Coastal Ocean Forecasting Systems

R2O Research to Operations

RADS Radar Altimeter Database System

RANS Reynolds-Averaged Navier–Stokes

RCP Representative Concentration Pathways

RFMOs Regional Fisheries Management 
Organisations

RHS Right Hand Side

RIOPS Regional Ice Ocean Prediction System

RMSD Root Mean Square Difference

ROC Receiver Operator Characteristic

ROMS Regional Ocean Modeling System

ROSE-L Copernicus Radar Observation System for 
Europe in L-band

RRR Rolling Review of Requirements

Rrs Remote Sensing Reflectance

SAMOA System of Meteorological and Oceanographic 
Support for Port Authorities

SANGOMA Stochastic Assimilation for the Next 
Generation Ocean Model Applications

SANIFS Southern Adriatic - Northern Ionian 
Forecasting System

SARAL Satellite with ARgos and ALtika

SAR Synthetic Aperture Radar

SCDA Strongly Coupled Data Assimilation

SCHISM Semi-implicit Cross-scale Hydroscience 
Integrated System Model

SCOBI Swedish Coastal and Ocean  
Biogeochemical Model

SCVTs Spherical Centroidal Voronoi Tessellations

SD Standard Deviation

SDGs Sustainable Development Goals

SEEK Singular Evolutive Extended Kalman filter

SHYFEM Shallow water HYdrodynamic Finite  
Element Model

SI Scatter Index

SI International System of Units

SIDFEx Sea Ice Drift Forecast Experiment

SIS Sea Ice Simulator

SIT System Information Table

SKEB Stochastic Kinetic Energy Backscatter

SLA Sea Level Anomaly

SLOSH Sea, Lake, and Overland Surges from 
Hurricanes

SMAP Soil Moisture Active Passive

SMMR Scanning Multi-channel Microwave 
Radiometer

SMOS Soil Moisture and Ocean Salinity mission

SOCAT Surface Ocean CO₂ Atlas

SOCIB Balearic Islands Coastal Observing and 
Forecasting System

SONEL Système d’Observation du Niveau des  
Eaux Littorales

SOOP Ship-of-opportunity

SPM Suspended Particulate Matter

SPOT Satellite pour l'Observation de la Terre

SPP Stochastic Perturbed Parameters

SPPT Stochastic Perturbed Parametrized 
Tendencies

SPUF Stochastic Parameterization of  
Unresolved Fluctuations

SSES Sensor Specific Error Statistics

SSH Sea Surface Height

SSM/I Special Sensor Microwave Imager

SSS Sea surface salinity

SST Sea surface temperature
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STAC Science and Technological  
Advisory Committee

SURF Structured and Unstructured Relocatable 
Ocean Model for Forecasting

SWAN Simulating WAves Nearshore

SWASH Simulating WAves till SHore model

SWE Shallow Water Equations

SWH, or Hs Significant Wave Height

SWOT Surface Water and Ocean Topography

TAC Thematic Assembly Center

TGTT Tide Gauge Task Team

TSG Thermosalinographs

TVD Total Variation Diminishing

UHSLC University of Hawaii Sea Level Centre

UKMO UK Met Office

UN United Nations

UNCTAD United Nations Conference on Trade  
and Development

UNDP United Nations Development Programme

UNFCCC United Nations Framework Convention on 
Climate Change

UNGA United Nations General Assembly

UOM Unified Ocean system Model

US United States

USA United States of America

USSR Union of Soviet Socialist Republics

VARANS Volume-Averaged Reynolds Averaged 
Navier–Stokes

VIIRS Visible Infrared Imaging Radiometer Suite

VISIR DiscoVerIng Safe and effIcient Routes

VOF Volume-O-Fluid

VP Viscous-plastic

WAM Wave prediction Model

WAVERYS Global Ocean Waves Reanalysis

WCDA weakly coupled data assimilation

WCOFS West Coast Operational Forecasting System

WMO World Meteorological Organization

WMO/LC-WFV World Meteorological Organisation Lead 
Centre for Wave Forecast Verification

WOA World Ocean Atlas

WOD World Ocean Database

WRF Weather Research and Forecasting Model

XBT Expendable bathythermograph
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This guide hopes to be a guideline and inspiration to professionals 
all around the globe, stimulating the reader to research deeper 
knowledge on this vast field. If this objective is achieved, this 
publication is expected to foster the generation of valuable 
information that will be used in decision making processes and, 
therefore, to advocate a wiser and more sustainable relation with 
our always generous ocean.
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