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12.1. 
Introduction
The	growth	of	ocean	prediction	research,	capability,	applica-
bility,	availability,	maturity,	and	user	uptake	from	an	 initial	
idea	25	years	ago,	while	gradual,	has	been	unrelenting.	To-
day’s capacity and maturity in ocean prediction goes beyond 
what was initially conceived and provides a strong basis for 
advancement	 of	 societal	 benefits.	 Over	 the	 next	 10	 years,	
ocean prediction systems will continue to gradually rival 
weather	prediction	systems	in	the	sense	of	ubiquitous	use,	
protecting	 lives,	economic	 impact,	and	supporting	custodi-
anship of the environment. Building a framework with stan-
dards and best practices for the full operational oceanogra-
phy value chain will enable further harnessing of prediction 
systems in supporting a healthy ocean at the same time of 
a blue economic growth for all countries. This will further 
awareness and accessibility of the marine environment 
through digital platforms underpinning increases in ocean 
prediction	literacy,	capacity	building,	applications,	and	ser-
vices	(Figure	4.1).	

Herein we outline the expected advances of ocean prediction 
and other supporting components of operational oceanogra-
phy over the next decade. An underlying theme is the inte-

gration of ocean prediction systems within the larger context 
of	operational	oceanography,	 seamless	environmental	pre-
diction,	and	the	blue	economy.	This	 requires	a	 transparent	
framework	 approach	 of	 standards	 and	 best	 practices,	 en-
abling	all	countries,	particularly	those	with	the	least	resourc-
es,	to	engage	and	benefit.

This chapter introduces the key drivers for the next genera-
tion	of	OOFS,	spanning	from	global	to	coastal	scale	observing	
systems	 (Section	12.2)	 to	numerical	models	evolution	 (Sec-
tion	12.3),	data	assimilation	(Section	12.4)	and	ensemble	sys-
tems	for	prediction	(Section	12.5),	from	the	growing	AI	tech-
niques	 for	 understanding	physical	 processes	 (Section	 12.6)	
to	seamless	approach	(Section	12.7)	and	DTO	(Section	12.8),	
including as well the evolution in quality assessment (Sec-
tion	12.9).	The	last	sections	focus	on	planned	evolution	for	
state-of-the-art services like the Copernicus Marine Service 
(Section	12.10)	and	international	initiatives	promoted	by	the	
UN	Decade	of	the	Ocean	(Section	12.11).

12.2. 
Observing system evolution with ocean prediction engagement
The quality of the ocean analysis and forecasts highly relies 
on observations assimilated for constraining the ocean cir-
culation in ocean forecasting systems. The evolution of the 
forecasting systems towards increased realism to represent 
a larger spectrum of ocean processes and scales will be un-
derpinned by the ‘adapted’ in situ and satellite observations 
that	 efficiently	 constrain	 the	 different	 scales	 of	 the	 ocean	
variability. Close collaboration between ocean forecasting 
centres and the observation providers is crucial to promote 
such evolution. Communication ensures the best use of in-
formation from the present to the future observation sys-
tems. It allows forecasting centres to inform on the obser-
vation use and to report on their impacts on analysis and 
forecasts.	In	the	longer	term,	it	also	increases	opportunities	
for the ocean forecasting centres to contribute to evolve 
ocean observing system designs to optimally meet require-
ments and enable capabilities of future operational systems. 
Inclusion of forecasting centres in designing and evaluating 

the future impact of the GOOS 🔗1 component has started 
to be recognized as a best practice in the observation and 
prediction community. 

In	such	a	context,	OOFS	strictly	depends	on	the	availability	of	
near-real time observations for assimilation and validation 
purposes. Accuracy of forecast products is largely impacted 
by	 the	 quality	 of	 assimilated	 observations,	 so	 that	 the	 ef-
fort of the community is to support the forecasters with high 
quality	data	in	space	and	time	sampling.	Le	Traon	et	al.	(2019)	
provides the Copernicus Marine Service strategy for obser-
vational network evolutions and the requirements for OOFS 
to	 support	maritime	 safety,	 marine	 resources,	 marine	 and	
coastal	 environments,	 weather,	 seasonal	 forecasting,	 and	
climate.	According	to	this	document,	the	main	priorities	are:

1.  https://www.goosocean.org/ 
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• For satellite data:

• Guaranteeing continuity of the present operational 
missions’ capacity of Sentinel for downstream coast-
al	applications,	and	of	Cryosat	mission	for	monitoring	
of sea ice thickness and sea level in polar regions;
• Developing new capacity for wide swath altimetry 
for the future OOFS and services; 
• Developing microwave mission for the improvement 
of	spatial	coverage	of	sea	surface	temperature,	sea	ice	
drift,	sea	ice	thickness,	and	sea	surface	salinity;
• Enforcing R&D for observing sea surface salinity 
and ocean currents from space.

• For in-situ data:

• At	 global	 scale,	 the	 main	 future	 challenges	 are:	
a)	 to	 improve	 the	coverage	of	biogeochemical	mea-
surement,	b)	the	measurement	of	deep	temperature	
and	salinity,	and	c)	measurement	of	 in-situ	velocity	
observations,	sea	ice	observations,	and	open-ocean	
wave measurements;
• At	a	regional	scale,	the	main	priority	is	to	fill	gaps	
for a wide range of variables in the shelf-coastal ob-
servational	networking,	in	order	to	improve	monitor-
ing and forecasting capacities.

Copernicus	Marine	Service	provides	specific	strategic	docu-
ments 🔗2 for both satellite and in-situ observations to sup-
port	monitoring	and	forecasting	activities.	The	GOOS	defines	
the following strategic objectives for observing systems at 
global level towards 2030: 

• to deepen engagement and impact by enforcing the 
connection with forecasting centres;
• to	 deliver	 an	 integrated	 fit-for-purposes	 observing	
system able to support and expand the implementation 
of observing systems and ensuring data management 
according to the FAIR principles;
• to build future observational networks by support-
ing innovation in observing technologies and extend-
ing systematic observations to understand impacts on 
the ocean.

12.2.1. Challenges for the current ocean 
observing systems

Major challenges for the current ocean observing systems 
include:	i)	most	of	the	ocean	observations	made	by	non-op-
erational	oceanography	communities	(e.g.	environment,	fish-
ery,	research,	and	industrial	sectors)	have	not	been	used	for	
operational forecasting; the ocean observations are made by 

2.  https://marine.copernicus.eu/about/observation-re-
quirements 

various sectors with different monitoring and data collection 
standards,	and	 little	efforts	have	been	made	to	harmonise	
observations	 from	 the	different	 sectors;	 and	 ii)	 technolog-
ic	bottlenecks	and	significant	data	gaps	in	sub-surface,	sea	
bottom,	geological	and	biological	observations.	

For	 developing	 an	 integrated	 and	 unified	 ocean	 observing	
system	 to	 support	 the	 seamless	 information	 service,	 three	
pillars	are	recommended,	,	as	shown	in	Fig.	12.1.	The	first	pillar	
is to maximise the value of existing observations by breaking 
the	institutional	and	sectorial	barrier	(She	et	al.,	2019)	and	fit	
for the purposes of multi-sectors. This can be implemented 
by performing multidimensional integration of operational 
and	non-operational	ocean	observing	communities,	includ-
ing	operational	monitoring,	environment	monitoring,	fishery	
monitoring,	research	monitoring,	crowd	(citizens	and	NGOs)	
monitoring and other sectoral monitoring (industrial and so-
cioeconomic).	 The	 observations	 should	 be	 “collected	 once	
and	used	for	many	times”	 (Martín	Míguez	et	al.,	2019).	Due	
to	the	existing	mandate	of	monitoring	entities,	either	public	
or	 private,	 current	 ocean	observing	practices	 are	designed	
separately	to	fit	for	the	purpose	of	individual	sectorial	ser-
vice,	and	observations	are	hardly	shared	from	different	mon-
itoring communities. When designing multidimensional in-
tegration	on	a	national	and	regional	scale,	unified	standards	
should be applied. The operational and autonomous plat-
form	is	an	efficient	framework	for	the	integrated	and	unified	
ocean	observing,	which	is	highly	recommended.	

The	second	pillar	is	to	develop,	deploy,	and	utilise	large	net-
works	of	autonomous,	cost-effective,	 innovative	sensors	to	
fill	the	observation	gaps	in	subsurface	and	emerging	obser-
vations,	 e.g.	 marine	 litter,	 biological	 variables,	 and	 under-
water noise. A combination of breakthroughs in underwater 
communication	technology,	underwater	robotics,	and	ML/AI	
may	significantly	improve	the	capacity	of	underwater	moni-
toring,	especially	for	pollutants,	biogeochemical	and	biolog-
ical variables. Adaptable observations are also needed for 
characterising key processes underpinning predictability in 
the marine earth system. 

The third pillar is to design and optimise existing ocean ob-
serving	to	fill	gaps	in	the	characterizations	of	processes	and	
sensitive	regions	that	are	crucial	to	the	predictability	and	fit	
for the purposes in multi-sectors. It is essential that the mon-
itoring	capacity	is	based	on	an	integrated	system	of	in-situ,	
remote	sensing,	models,	assimilation,	and	ML/AI	tools.	Sam-
pling schemes of such a system can then be designed to opti-
mise	the	integrated	monitoring	capacity,	so	that	observations	
would most effectively be used to reduce the earth system 
prediction uncertainties. It should be noted that dedicated 
observations	 should	 be	 identified	 and	 included	 to	 address	
specific	predictability	in	the	UOM	(She	et	al.,	2016).	
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12.2.2. Observing System Evaluation

At	present,	OS-Eval,	based	on	ocean	forecasting	systems,	are	
not often conducted in a coordinated manner. The most used 
techniques of OS-Eval are data denial experiments with real 
or	 simulated	 observations	 (e.g.,	 OSE	 and	 OSSE).	 Although	
only observation platforms which are already existing with 
real	 observations	 can	 be	 evaluated,	 simulated	 observa-
tions allow us to evaluate the impact of future platforms or 
evolution of the observation network. Impact assessment 
methods will evolve in the future with more sophisticated 
techniques	 based	 on	 ensemble	 and	 adjoint	methods,	 and	
potentially also AI. Considering that BGC applications and the 
earth	 system	 predictions,	 including	 the	 ocean	 component,	
are	 progressively	 becoming	 more	 important,	 the	 develop-
ment of suitable evaluation methods for those applications 
is also indispensable. Improving analysis/forecast accuracy 
and developing methods assimilating new types of observa-
tion data will increase the ability to make fair assessments 
for various platforms. Multi-system evaluation and regular 
re-assessment of the observation impact to follow the sys-
tem evolutions are required to improve the robustness of the 
results by moderating system-dependency. 

Enhanced communication and coordination between model-
ling/data assimilation experts and observation/network ex-
perts will be essential for a proper design and interpretation 
of	OS-Eval,	especially	to	extract	compelling	messages	on	the	
ability of the ocean observing system to control processes 
having different temporal and spatial scales. The provision of 
regular reports on ocean observation impacts in ocean predic-
tion systems is expected to enhance such communication. It 
should also be noted that OS-Eval activities require dedicated 
infrastructures and resources. Cooperation with internation-

al	partners	(e.g.	OceanPredict,	GOOS/ROOS,	WMO,	IOC,	etc.)	is	
hence essential to establish a substantial value chain between 
ocean observation networks and ocean prediction systems. 

OS-Eval activities require dedicated infrastructures and re-
sources. It is essential to strengthen the capabilities of oper-
ational and climate centres to assess the impact of present 
and future observations to guide observing system agencies 
but also to improve the use of observations in models.

An observation network cannot be considered by its own but 
should be evaluated in complementarity with other in-si-
tu and satellite networks. The synergy from a combination 
of observation platforms’ data with the other existing and 
planned in-situ and satellite observations should be evalu-
ated. This will be necessary since the model forecasts need 
to	be	constrained	on	a	large	spectrum	of	scales,	as	individu-
al platforms cannot provide it. Optimally leveraging satellite 
and in-situ observations to improve the ocean predictability 
is an important research topic with strategic importance. Un-
derstanding and being able to showcase and demonstrate 
the impact of both present and future observing systems in 
improving ocean prediction (and environmental prediction in 
general)	 is	 important	 to	 justify	and	maintain	 long	 term	 in-
vestments for the observation system. Feedback from such 
efforts enables observation groups to know where to invest 
their	efforts,	both	technologically	and	in	terms	of	geographic	
coverage in density and scope.  

To	best	showcase	evaluations	of	the	observing	system,	pre-
diction impact metrics should be generated in terms of value 
for:	(1)	user	and	application	needs;	and	(2)	observing	system	
needs.	On	 the	user	and	application	 side,	 elements	 like	 the	
WMO	RRR	can	be	used,	 in	which	 the	 impact	of	an	observa-
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Figure 12.1. Integrated observing. Unlocking the value of ocean observing by integrating observations in 
three	dimensions:	fit	for	purpose,	parameter,	and	instrumental	(source:	She	et	al.,	2019).
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tion on the forecast system is framed in terms of impact on 
a user or application. This can entail further post processing 
of	prediction	output,	to	translate	forecasting	impact	into	in-
formation	that	the	end	user	will	use	directly.	For	example,	for	
Search and Rescue at sea it may be necessary to know the 
impact	of	an	observing	system	on	drift	prediction,	and	quan-
tifying how much it would decrease the search area at sea 
while still ensuring high probability of detection. There is also a 
need to show the impact of an observing system on a variety 
of	applications,	as	well	as	to	provide	insight	into	the	impact	
of decreasing or augmenting the number of observations. 
Additionally,	when	developing	metrics	to	support	observing	
system	needs,	the	multi-purposeless	of	the	observations	(cli-
mate,	ocean	services	and	health)	needs	to	be	covered.	

Real-time impact assessment methods should also be de-
veloped to monitor and report on the use and impact of the 
different assimilated observation networks by operational 
ocean forecasting centres. This will help to detect impacts of 
changes	 in	 the	observation	network,	and	 take	countermea-
sures against them. 

In the next subsections are presented the evolution plans for 
the	observatory	component,	i.e.	ARGO	and	satellite	observa-
tions,	which	will	drive	the	next	generation	of	OOFS.

12.2.3. Argo evolution plans

The international programme Argo (🔗3)	is	currently	the	ma-
jor global initiative for the collection of “information from in-
side	the	ocean	using	a	fleet	of	robotic	instruments	that	drift	
with the ocean currents and move up and down between the 
surface and a mid-water level”. In Chapter 4 can be found 
an overview on the current ARGO operational capabilities for 
OOFS. Argo design after 2020 is available at 🔗4,	 including	
the following major targets:

• Improved observational capacity in the polar sea-ice 
regions and marginal seas;
• Increased resolution in key areas like the Western 
Boundary	 Currents	 in	 which	mesoscale	 noise	 is	 high,	
and the Equatorial region for which high temporal res-
olution is needed;
• Launch of new missions for biogeochemical and deep 
region variables.

Next generation Argo programme is also oriented towards 
validation and deployment of new sensors for measuring 
ocean	turbulence	and	small-scale	mixing,	which	 is	 funda-
mental	for	improving	OOFS,	numerical	models,	data	assimi-
lation	schemes,	and	validation	of	forecast	products.	

3. https://argo.ucsd.edu/
4. https://argo.ucsd.edu/argo-beyond-2020/

Expansion of the observing network requires maintenance 
and advancements of data management systems among pro-
viders and forecasting centers to ensure interoperability and 
open	access	to	growing	data	inflow	(Roemmich	et	al.,	2019)

12.2.4. Next phase for satellite missions 

Satellite	 observations,	 together	with	 those	 in-situ,	 are	 the	
key element for the global ocean observing system. In Chap-
ter 4,	 it	 has	 already	 been	 provided	 a	 general	 overview	 of	
the type of data used for building OOFS. Next generation of 
forecasting systems will also exploit the new technological 
advancements	 in	 the	 observational	 network,	 and	 satellite	
measurements will play an important role in monitoring the 
cryosphere,	coastal	zones,	and	inland	waters	to	improve	the	
quality of marine services. The International Altimetry Team 
has recently published a contribution about the future 25 
years of progress in altimetry measurements (International 
Altimetry	Team,	2021);	 according	 to	 this	work,	 the	main	 re-
quirements	 by	 altimetry	 for	 scientific	 and	 operational	 ad-
vances	of	operational	oceanography,	and	more	in	general	for	
Earth	system	science,	are:

• Increasing the coverage of satellite measurements to 
support	 ocean	 dynamics	 understanding,	 from	 smaller	
mesoscale	 to	 sub-mesoscale,	by	means	of	multi-plat-
form	in-situ	measurements,	multi-satellite	and	SAR,	and	
SAR-interferometry altimetry;
• The design of ad-hoc experiments for in-situ data 
collection guided by remote data;
• The evaluation of vertical circulation by means for in-si-
tu and high resolution sea surface height measurements;
• Guaranteeing the continuity of the current operation-
al measurements;
• Estimating uncertainties on regional sea level trends 
by comparing tide gauges with GNSS positioning with 
altimetry;
• Improving sea level record at coastal scale by using 
high	 resolution	 SAR	 altimetry,	 tide	 gauges	 with	 GNSS	
positioning,	 and	 developing	 GNSS	 reflectometry	 (the	
last is very promising for providing sea level change 
measurements);
• Increasing the spatial resolution of altimetry products 
with advanced techniques like SARIn-based “swath mode” 
processing and fully focused SAR over polar oceans;
• Increasing not only spatial but also temporal reso-
lution by means of higher resolving altimeter such as 
SWOT,	accompanied	by	larger	altimetry	constellation	that	
includes	swath	and	conventional	altimetry,	doppler	wave	
and	current	scatterometer,	and	integrated	altimeter.	
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Ocean models are one of the pillars for OOFS. Chapter 4 
provides information on current modelling capacities while 
Chapters	 from	 5	 to	 10	 deepen	 the	 theoretical	 aspects,	 but	
still remain a main question to be answered: What is expect-
ed by ocean models for the future OOFS? Fox-Kemper et al. 
(2019)	provided	an	extensive	review	on	challenges	and	per-
spectives	 in	 ocean	models,	 touching	 many	 scientific	 open	
questions	and	issues	to	solve.	In	particular,	evolving	the	core	
models	 to	address	adequate	 scales	 in	 space	and	 time,	 ac-
curately	representing	physical	processes,	and	running	fastly	
is	 the	baseline	 for	 improving	predictability,	as	well	as	past	
reconstruction	of	the	blue,	green	and	white	ocean.	These	are	
the challenges that have to be tackled for the improvement 
of future OOFS.5

Le	Sommer	et	al.	(2018)	showed	that	the	evolution	in	ocean	
modelling for operational oceanography is strictly connect-
ed to resolve physical processes down to the submesoscale 
(Chassignet	and	Xu,	2021)	and	to	describe	internal	wave	and	
internal tides at a global scale thanks to increase in comput-
er power and improved physical parameterization (Shriver et 
al.,	2012).	Increasing	resolution	in	space	and	time	is	not	the	
only way to address high quality operational products: mod-
ularity	of	modern	geoscientific	models	is	key	for	addressing	
modelling	complexity	(Le	Sommer	et	al.,	2018).	

Modelling complexity and modularity for the next generation 
of OOFS have a computational cost that needs to be account-
ed for once we consider evolutions in numerics. Evolutions in 
High Performance Computing is then another pillar on which 
establishing	OOFS;	scientific	questions	to	be	solved	require	
also	to	face	technological	challenges.	Le	Sommer	et	al.	(2018)	
highlighted how the main current limitations in the modelling 
framework capacity is not due to computational speed of the 

5.	 	https://marine.copernicus.eu/sites/default/files/media/
pdf/2020-10/CMEMS-requirements-satellites.pdf 

processors,	but	on	access	 to	memory	and	 latency	 in	 input/
output. Such limits require a deep revision on the way devel-
opments	are	carried	on,	but	sustained	collaboration	between	
ocean modellers and computer scientists is also key. 

The	usage	of	graphics	processing	units	(GPU)	is	progressively	
accelerating the Earth system modelling the atmosphere and 
the ocean. This transition to modern massive supercomput-
ers requires re-design numerical codes and HPC optimiza-
tion/parallelization strategies. In the oceanographic commu-
nity,	codes	have	been	progressively	ported	on	hybrid	CPU/
GPU	architectures:	 for	 example,	 Xu	 et	 al.	 (2015)	 provided	a	
first	example	of	porting	of	the	POM	on	GPU	architecture,	fo-
cusing	on	adopted	strategy	for	memory	access	optimization,	
new	design	of	communications,	boundary	optimization	over-
lapping	approach,	and	I/O	optimization,	achieving	over	400x	
speedup	 against	 a	 single	 CPU	 core,	 reducing	 energy	 con-
sumption	by	about	seven	times.	Liu	et	al.	(2019)	provided	a	
description	of	the	first	parallel	implementation	and	optimi-
zation of the ROMS on a many-processor	system,	the	Sunway	
sw26010: the result showed that the speedup of optimised 
hotspot program can be up to 3.69x with respect to original 
ROMS one. Such examples demonstrate how future complex 
computing architectures can be exploited for accelerating 
ocean	 models	 execution,	 benefiting	 operational	 systems,	
and opening new frontiers in numerical modelling.

Growing application requirements push from petascale to 
exascale:	 in	 the	near	 future	 larger	datasets,	more	parame-
ters,	much	more	computing,	more	need	for	parallelism,	and	
large power consumption will be available. These improve-
ments are strictly connected to evolutions in climate and 
ocean modelling that aim to represent real-world systems 
characterised by multi-physics and multi-scale interaction in 
space	and	time,	opening	to	predictive	science.	

12.3. 
Numerical models planned evolutions, including adaptation to 
new HPC systems 

To support operational oceanography and marine appli-
cations,	Copernicus	Marine	Service		has	drawn	up	a	doc-
ument 🔗5  that describes the main requirements for the 
evolution of the Copernicus Satellite Components. It fo-
cuses on the need of a multi-sensor and multi-mission 
approach	for	collecting	SST,	SSS,	ocean	colour,	currents,	
wind,	and	wave	measurements.	This	would	constrain	fu-

ture	high	resolution	open	ocean,	coastal	models,	and	cou-
pled ocean/wave models. The document also recognizes 
the	need	of	improving	space/time	resolution,	to	better	mon-
itor and forecast the physical and biogeochemical state of 
the	ocean	at	fine	scale,	and	to	improve	the	monitoring	of	
coastal zones and of rapidly changing polar regions.
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Emerging observing technologies provide impetus to the devel-
opment of DA systems. Operational ocean DA systems are con-
stantly evolving their application of improved data assimi-
lation	methods,	their	use	with	increased	resolution	models	
and	models	with	increased	complexity,	their	use	of	new	and	
upcoming	observing	technology,	and	their	use	of	new	com-
munity DA software and computer hardware infrastructures. 
Below is a summary of some of the areas in which DA is ex-
pected to evolve in operational forecasting systems over the 
next 10 years.

In	terms	of	the	DA	methodology,	the	most	immediate	develop-
ment is the merging of ensemble and variational methods. Draw-
ing	on	the	strengths	of	both	approaches,	the	“hybrid”	approach	
is being developed in a number of forecasting centres. The static 
or parametrized version of the background error covariances 
used	in	variational	methods	and	the	flow-dependent	estimates	
from an ensemble are combined. Experience from NWP suggests 
that the hybrid approach performs better than an either pure 
variational	or	pure	ensemble	method	(Lorenc	and	Jardak,	2018);	
efforts are underway to implement similar capability in global 
and regional ocean forecasting systems. These are likely to reach 
some maturity over the coming few years. More sophisticated 
DA	methods,	which	do	not	rely	on	the	assumption	that	forecast	
errors have an unbiased Gaussian distribution (such as particle 
filters,	van	Leeuwen	et	al.,	2015),	are	being	actively	pursued	to	
deal	with,	for	instance,	biogeochemical	variables.	Another	grow-
ing area of methodological development is the application of 
machine learning to the data assimilation problem (Bonavita et 
al.,	2021),	particularly	in	regard	to	model	error	estimation,	model	
parameter	estimation,	and	the	estimation	of	forecast	error	cova-
riance statistics.

Ocean model resolution is constantly being increased as 
more computer resources become available. DA systems need 
to evolve to make sure they can deal with the larger range of 
scales in the models. The complexity of models is also increasing 
in both the ocean models themselves and the different 
types of coupled models being used. Applying DA methods to 
ocean/sea-ice	models,	physical-biogeochemical	models,	acous-
tic-physical	models,	and	more	complete	earth	system	models	
that	 include	many	different	earth	system	components,	 is	an	
active	area	of	research	(Penny	et	al.,	2019).	Models	used	for	op-
erational	ocean,	sea-ice,	and	atmosphere	forecasting	on	short	
timescales are increasingly becoming coupled together and 
the data assimilation methods needed to effectively initialise 
these systems are being developed. Most operational coupled 
weather forecasting systems do not currently use strongly cou-
pled	data	assimilation	methods,	whereby	ocean	observations	
can	directly	influence	the	atmospheric	analysis	and	vice	versa,	
but they are expected to be developed and implemented over 
the next decade. 

The software infrastructure needed to apply the data assim-
ilation is also under development by several new commu-
nity	DA	software	systems,	 including	 the	DART	 (Anderson	et	
al.,	2009),	the	OOPS,	the	JEDI,	EnKF-C	(Sakov,	2014),	and	the	
PDAF	 (Nerger	et	al.,	 2020).	The	computer	hardware	used	 to	
run forecasting systems is also evolving with different ar-
chitectures	such	as	GPUs,	which	will	become	a	strong	com-
putational candidate for operational forecasting systems in 
a 10-year timeframe along with the evolution of numerical 
codes. The community software systems provide the oppor-
tunity for more collaboration between operational forecast-
ing	groups,	and	between	operational	and	research	groups.	

12.4. 
Future evolutions in ocean data assimilation for operational 
ocean forecasting

Exascale computing is then the next frontier to build global 
climate systems at the optimal model resolution that requires 
a high level of performance capabilities but remaining within 
a	specific	power	budget.	Operational	centres	need	to	account	
for heterogeneous computing resources: heterogeneous com-
puting aims to match the requirements of each application 
to	the	strengths	of	CPU/GPU	architectures	(Mittal	and	Vetter,	
2015).	The	collaborative	framework	among	different	hardware	
components	is	an	open	research	field	that	aims	at:

• Port large-scale codes written in CPU or GPU-suited 
languages into heterogeneous computing systems min-
imising overhead and error-prone;
• Design new suitable data-access strategies to take 
full advantage of fused CPU-GPU systems;
• Reduce use of more classical programming languages 
like Fortran in favour of more modern computing lan-
guages such as Python;
• Increase data analytics capacities;
• Decrease energy consumption towards Green Computing.
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12.5. 
Future of ensemble prediction systems
Numerical	ocean,	weather,	seasonal	and	climate	forecasting	
systems across the world are tending towards becoming cou-
pled ensemble data assimilation prediction systems (Brass-
ington	et	al.,	2015;	Barton,	2021;	Buizza,	2021;	Frolov,	2021;	Fujii	
et	al.,	2021;	Komaromi,	2021),	including	a	better	coverage	of	
the inter-relationships among the geophysical domains of 
the	ocean,	atmosphere,	sea	 ice,	 land,	and	biogeochemistry	
(Sandery	et	al.,	2020;	O’Kane	et	al.,	2021).	Forecasting	systems	
are	also	increasingly	applied	to	finer	spatiotemporal	scales.

The need to quantify the probability distribution of fore-
cast	error	in	coupled	and	downscaled	models,	as	well	as	the	
reliability	and	accuracy	of	 forecasts,	will	be	served	well	by	
ensemble	prediction	systems,	such	as	those	using	the	EnKF	
(e.g.,	Sandery	et	al.,	2020;	O’Kane	et	al.,	2021;	Sun	et	al.,	2020;	
Minamide	and	Posselt,	2022).	

Ensemble prediction systems enable synthesis of models 
and observations leading to data that can be used to provide 
best estimates of geophysical variables and quantify the 
dynamics	of	 their	uncertainty	 (Sandery	et	al.,	 2019)	 (Figure	
12.2).	Uncertainty	quantification	will	become	as	important	in	
forecasts	as	the	forecasts	themselves,	providing	guidance	on	
reliability and insight into fast growing disturbances in the 
geophysical environment. As described in other sections of 
this	 chapter,	 advances	 in	 ensemble	prediction	will	 also	be	
coupled	to	improvements	in	models,	observations,	data	as-
similation,	computer	resources	and	technology.	

There	 is	 an	 associated	 loss	 of	 predictability	 towards	 finer	
scales	(Jacobs	et	al.,	2021).	Prediction	systems	using	coupled	
data	 assimilation	 and	 finer	 spatial	 resolution	 will	 require	
larger	ensembles,	more	 frequent,	 representative	and	accu-
rate	observations,	 and	 improved	data	assimilation	practic-
es. Extending the range of predictability will be facilitated 
by advances to ensemble prediction systems. Operational 
ensemble systems will incorporate improved methods for 
data assimilation in the presence of model error and strong 
non-linearities,	such	as	the	iterative	EnKF	(Sakov	et	al.,	2017),	
hybrid	covariance	methods	(Kotsuki	and	Bishop,	2022),	and	
assimilation of non-linear observations such as water va-
pour,	 cloud,	precipitation,	 sea-ice,	 and	phytoplankton	 con-
centration	(Bishop,	2016;	Posselt	and	Bishop,	2018).

Combining ensemble prediction with machine learning and 
artificial	intelligence	will	also	play	an	increasing	role	in	fore-
casting	 (Brajard	et	 al.,	 2021;	Weyn	et	 al.,	 2021).	 In	 some	 in-
stances,	forward	models	with	reduced	order	low	dimensional	
and	data-driven	differentiable	emulators	(Maulik	et	al.,	2021)	
will be able to replace full non-linear models to reduce com-
putational	cost	and	assist	in	searches	for	initial	conditions,	
patterns,	 parameterisations	 and	 ensemble	 perturbations	
appropriate for particular forecasts. Ensemble prediction 
systems	 will	 be	 used	 to	 identify	 initial	 states,	 forcing	 and	
dynamics that contribute to regime transitions (O’Kane et al 
2019;	Quinn	et	 al.,	 2020)	 and	 in	 the	 forecasting	of	 extreme	
events	(Hawcroft	et	al.,	2021).	

Forecast	model	parameters	will	continue	to	be	poorly	known,	
subject	 to	 uncertainty,	 dependent	 on	 grid	 resolution,	 and	 a	
source of model bias requiring joint state and parameter es-
timation	 (Kitsios	et	al.,	 2021).	With	 this	approach,	predictabil-
ity of certain geophysical processes may be improved (Zhang 
et	al.,	2017).	Future	ensemble	prediction	systems	will	be	opti-
mised with model parameters that minimise bias in the ensem-
ble mean but that adequately represent the parameter’s error 
probability	distribution	in	the	ensemble	(Gao	et	al.,	2021).	Cou-
pled model forecasts will be able to be optimised in state and 
parameter space. Model error minimization will be multi-variate 
and simultaneous across the geophysical realms with respect to 
the	global	network	of	observations	(Sandery	et	al.,	2020).

Ensemble prediction systems will play an increasing role in 
the	 future	 design	 of	 observation	 systems	 (Sandery	 et	 al.,	
2019	 and	 2020).	 Coupled	 ensemble	 prediction	 provides	 in-
sight into unobserved variables through cross domain co-
variances. Future applications of coupled ensemble predic-
tion systems will provide improved reanalysis products with 
tighter	constraints	on	carbon,	sea-ice	volume,	air-sea	fluxes,	
ocean	heat	storage	and	transport,	using	optimally	designed	
observing systems. 
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Unstructured mesh models that enhance resolution towards 
the coastline for detailed hydrodynamic and biogeochemical 
forecasting	of	coastal	and	river,	lake	and	estuarine	circulation	
processes	(Herzfeld	et	al.,	2020)	will	be	run	as	ensemble	pre-
diction systems. Meshes that adapt resolution according to ar-
eas	of	most	rapidly	growing	geophysical	instabilities,	such	as	
in	tropical	cyclone,	tsunami,	and	flood	forecasting	(Beisiegel	
et	al.,	2021)	will	also	be	run	as	ensemble	prediction	systems.	

As	systems	continue	to	be	developed,	improving	the	accura-
cy of forecast error covariance estimates will deliver coupled 
downscaled analyses and forecasts with greater skill. With 
advances	 to	 observation	 systems,	 relatively	 higher	 resolu-
tion	monitoring	and	ensemble	prediction	of	sea-ice,	waves,	
currents,	 sea-levels,	 temperatures,	 biogeochemistry,	 and	
the	tracing	of	river	plumes	containing	sediments,	contami-
nants,	and	pollutants	may	be	made	possible	using	ensem-
ble prediction systems. Access to future higher resolution 
ocean in-situ and satellite data may enable prediction of the 

Figure 12.2. Quantifying the dynamics of system uncertainty. This image shows forecast ensemble spread in 
sea	surface	temperature	(K)	and	sea	ice	concentration	on	28th	September	2017	(in	observation	space)	from	a	96	
member,	0.1o	horizontal	resolution	coupled	ocean-sea-ice	EnKF	prediction	system,	known	as	ACCESS-OM2-EnKF-C	
(Sakov,	2014;	Kiss	et	al.,	2020).	SST	spread	is	related	to	uncertainty:	the	forecast	dynamical	state	of	Tropical	Insta-
bility Waves and sea ice spread shows that forecast uncertainty at this time of year is greatest in certain areas.

ocean	sub-mesoscale	circulation	and	near-field	currents	for	
search	 and	 rescue,	 ship-routing,	 safety,	 and	 recreation.	 As	
science,	technology,	networking,	and	connectivity	improves,	
real-time assimilation of user-supplied observations into 
ensemble prediction systems to augment local predictability 
may become possible.  
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Recent developments in AI open many interesting opportu-
nities in the context of operational oceanography and ocean 
forecasting systems. Operational forecasting systems are 
indeed not only based on observational data but also on 
algorithms. These algorithms gather and encode our under-
standing	of	physical	systems	and	their	dynamics,	as	well	as	
of observation networks and associated uncertainties. They 
also	reflect	our	collective	knowledge	on	the	relevant	criteria	
for evaluating ocean data products. As in many activities re-
lying	on	algorithms,	the	emergence	of	artificial	intelligence,	
and	especially	of	deep	learning,	opens	a	number	of	new	pos-
sibilities,	and	is	therefore	the	subject	of	growing	interest	in	
our community. 

The ML generally refers to all the methods used to build 
algorithms whose components and parameters are not 
defined	 a	 priori	 but	 are	 trained	 according	 to	 a	 given	 ob-
jective.	This	field	encompasses	a	large	number	of	different	
methods,	 algorithms,	 and	 training	 strategies.	 It	 is	 a	 wide	
and	fast-moving	research	field	that	includes,	but	is	not	re-
stricted	to,	deep	learning.	ML	is	also	intimately	linked	to	a	
technological landscape and a software ecosystem in con-
stant evolution. These technologies allow researchers and 
engineers to assemble complex algorithms from elementary 
building	blocks	in	a	very	versatile	and	modular	way,	with	in-
teresting performances compared to state-of-the-art meth-
ods in many disciplines.  

Applications	of	artificial	 intelligence	are	currently	 in	vogue	
but,	 beyond	 the	 hype,	 artificial	 intelligence	 and	 machine	
learning can help us to overcome some of the current limita-
tions of ocean forecasting systems. Ocean models and data 
assimilation	methods,	which	are	the	scientific	underpinning	
of	current	ocean	forecasting	systems,	are	indeed	facing	im-
portant challenges. Performing large ensemble simulations 
with	 full	 ocean	models	 at	 increasingly	 fine	 spatial	 resolu-
tion	 is	 becoming	more	 and	more	 difficult	 computationally.	
We still do not know how to fully exploit hybrid computing 
architectures in our systems. We do not have a robust and 
plug-and-play framework to adapt their complexity to new 
custom applications. Although they are constantly being 
improved,	 our	 systems	 are	 also	 becoming	 increasingly	 dif-
ficult	to	modify	and	maintain.	As	developed	in	the	following	
subsections,	AI	and	ML	may	well	help	us	to	overcome	these	
limitations and may even deeply impact on the structure of 
our operational systems. 

12.6.1. Expected contributions of machine 
learning to ocean forecasting pipelines

Machine learning has long been used in ocean sciences 
and	operational	oceanography.	However,	these	applications	
have so far mostly been limited to data retrieval algorithms 
upstream	 of	 forecasting	 systems	 (remote	 sensing,	 quality	
control),	or	to	data	processing	and	analysis	 in	downstream	
applications	 (data	mining,	data	 fusion).	 In	 this	 context,	ML	
algorithms have been essentially seen as black boxes with-
out much physical basis. This perception is fundamental-
ly renewed with the emergence of physics based machine 
learning	 and	differentiable	 programming,	which	 now	allow	
to	bridge	physical	sciences,	scientific	computing,	uncertainty	
quantification,	and	machine	learning	(Carleo	et	al.,	2019).	

If	we	adopt	a	data-centric	viewpoint,	ocean	forecasting	sys-
tems can indeed be described as a succession of independent 
data	processing	steps	in	sequential	pipelines	(see	Figure	4.1).	
These pipelines include the collection of past observation-
al	 data,	 data-assimilation	 to	 reconstruct	 the	 current	 state	
of	 the	ocean,	 forecasting	with	a	physics-based	model,	 and	
eventually the post-processing and dissemination to users. 
Data is being processed with algorithms at each step of the 
pipelines. It is now obvious that modern machine learning 
has the potential to impact each step of the data-processing 
pipelines of operational oceanography and ocean forecast-
ing systems.

As	 mentioned	 above,	 many	 applications	 can	 be	 identified	
upstream or downstream of the core engines of ocean fore-
casting systems. Typical applications of ML upstream of core 
engines	include,	for	instance,	algorithms	for	alleviating	ob-
servational	noise,	for	retrieving	parameters	(Malmgren-Han-
sen,	2021),	or	for	data	quality	control	(Castelão,	2021).	ML	can	
thus	be	used	for	detecting	outliers	in	Argo	profiles	(Maze	et	
al.,	 2017).	 The	 range	 of	 possible	 downstream	 uses	 of	 core	
forecasting engines is even wider. ML is here expected to help 
design tailored services addressing key challenges (Persello 
et	al.,	2022),	such	as	improving	the	prediction	of	Lagrangian	
drift or detecting anomalous extreme events. 

However,	what	is	probably	more	difficult	to	perceive	is	how	
machine learning may soon affect the core engine of ocean 
forecasting	systems,	and	eventually	all	the	services	to	users.	
Machine learning and differentiable programming are in-
deed	opening	many	opportunities	in	computational	fluid	dy-

12.6. 
Opportunities of artificial intelligence for ocean forecasting systems
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namics	(Vinuesa	and	Brunton,	2021),	while	deeply	renewing	
inverse	methods	in	many	areas	(Cranmer	et	al.,	2020).	These	
recent advances could be leveraged for improving ocean 
models,	e.g.	for	better	accounting	for	unresolved	processes	
(Brunton	 et	 al.,	 2020;	 Zanna	 and	 Bolton,	 2021).	 They	 could	
also help improve data assimilation schemes (Bonavita and 
Laloyaux,	2020),	or	even	possibly	replace	full	inversion	pipe-
lines	(Fablet	et	al.,	2021).	

These recent advances open the possibility to design and 
train our core forecasting engines in such a way that their 
complexity	and	performance	could	be	optimised	for	specific	
applications,	ultimately	improving	our	ability	to	meet	the	di-
versity of user needs.

12.6.2. Designing fully trainable ocean 
forecasting systems core engines

The core engines of current ocean forecasting systems are 
based on two types of objects that are still quite indepen-
dent,	namely	ocean	circulation	models	and	data	assimilation	
methods.	 Ocean	 models,	 data	 assimilation	 methods,	 and	
their implementation in forecasting systems are being con-
tinuously improved. But our core forecasting engines are still 
rather	 static	 in	 their	 design	 and	 structure,	 due	 to	 techno-
logical,	 organisational	 and	historical	 reasons.	 For	 instance,	
ocean models are generally developed without taking into 
account how they will be implemented with data assimila-
tion.	As	such,	there	is	no	guarantee	of	the	optimality	of	the	
overall	design	of	our	systems	and	its	fit	for	purpose	in	spe-
cific	contexts.	

Recent developments at the interface of machine learning 
and	scientific	computing	could	open	the	possibility	of	opti-
mising the design of our core prediction engines according 
to	predefined	objectives.	Indeed,	beyond	the	improvements	
of	 specific	 components	 of	 ocean	models	 or	 data	 assimila-
tion	schemes,	the	real	benefit	to	be	expected	from	machine	
learning in forecasting systems is the ability to optimise 
entire pipelines with end-to-end strategies. The term end-
to-end here refers to the ability to optimise components of 
processing pipelines based on metrics measuring the per-
formance of the entire pipeline. End-to-end strategies may 
eventually	allow	the	design	of	fit	for	purpose	and	user-cen-
tric processing chains and products. 

There are obviously technological conditions to realise this 
potential. Integrating trainable components in core forecast-
ing engines is indeed greatly facilitated if these engines are 
already composed of independent modules with robust and 
stable interfaces. It is therefore necessary a gradual evo-
lution to make the system more modular and composable. 
Moreover,	if	we	want	to	take	advantage	of	end-to-end	strat-
egies,	 the	 core	 engines	 should	be	 fully	 differentiable.	 This	
would	allow	to	back-propagate	a	misfit	in	the	prediction	into	

an increment in the parameters of the engine. This is only 
possible if the core engine is written in a high-level differen-
tiable language or programming framework.

Such	prerequisites	may	at	first	appear	daunting,	but	a	grad-
ual	evolution	towards	modular,	composable,	and	differentia-
ble	 core	 engines	would	 also	have	 important	 side	benefits.	
First,	 this	effort	 to	redesign	our	core	engines,	may	actually	
provide a viable strategy for exploiting upcoming comput-
ing	architectures,	starting	 from	GPUs	(Kochkov	et	al.,	2021).	
It	may	also	simplify	the	maintenance	of	our	engines,	as	for	
instance	the	development	of	adjoint	models	(Hatfield	et	al.,	
2021),	 therefore	 speeding	 up	 the	 transfer	 from	 research	 to	
operation	 (R2O).	 Another	 benefit	 is	 also	 the	 built-in	 treat-
ment	of	uncertainties,	thanks	to	recent	advances	in	probabi-
listic	programming	(van	de	Meent	et	al.,	2021)	and	Bayesian	
Machine Learning 🔗6.  

12.6.3. Towards user-centric, ocean digital 
twins leveraging lightweight emulators

Looking	further	ahead,	it	can	be	guessed	what	future	digital	
twins of the ocean will eventually look like. The integration 
of AI components may indeed gradually change the under-
lying paradigm of ocean forecasting systems. While current 
systems essentially implement “single-core engines” with a 
predefined	level	of	complexity,	future	systems	may	be	based	
on	collections	of	core	engines,	tailored	to	the	specific	needs	
of particular users. These tailored core engines would in-
stantiate core methods and building blocks in a versatile and 
user-centric	way,	providing	fit	 for	purpose	 tools	and	prod-
ucts to users.

Whatever	form	digital	twins	will	eventually	take,	a	key	method-
ology will be the ability to train emulators of existing systems 
at reduced costs and with controlled complexity. As described 
above,	a	gradual	evolution	of	our	core	forecasting	engines	will	
be needed for leveraging the full potential of AI and ML. This 
transition may in particular leverage DDEs. They provide ap-
proximations	of	pre-existing	algorithms	(Kasim	et	al.,	2021)	and	
can be integrated in data assimilation schemes (Nonnenmacher 
and	Greenberg,	2021).	As	such,	DDEs	offer	a	good	solution	for	
building	 upon	 existing	 expertise	 and	 tools,	 while	 benefiting	
from	the	pace	of	scientific	and	technological	advances	in	AI.	

6.  https://jorisbaan.nl/2021/03/02/introduction-to-bayes-
ian-deep-learning.html 
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Palmer	et	al.	(2008)	used	“seamless”	to	refer	to	predictions	
across	 the	 range	 of	 weather	 and	 climate	 time	 scales,	 e.g.	
ranging from forecast in days to projections in decades. The 
WMO,	 in	 its	 document	 “Seamless	 prediction	 of	 the	 Earth	
system:	 from	minutes	 to	months”	 (WMO,	 2015),	 further	de-
veloped	 this	 concept,	 with	 a	 main	 focus	 on	 the	 weather	
component but also starting to consider its importance for 
the	ocean.	Then,	within	EuroGOOS	this	concept	has	been	ex-
panded to promote next generation of ocean services able 
to seamlessly span spatially from global ocean to coastal 
areas and estuaries as a continuum with high resolution in-
formation	(She	et	al.,	2021).	To	achieve	the	objectives	of	the	
seamless	approach,	numerical	ocean	models	need	to	evolve	
(Chassignet	and	Xu,	2021;	Fox-Kemper	et	al.,	2019)	towards:

• Use	of	nested	and	regional	downscaling	simulations,	
by means of high-resolution spatial grid spacing or us-
ing variable-resolution and multi-scale modelling;
• New parameterizations and improvement of the ex-
isting	 ones	 (e.g.	 air-sea	 parameterization,	 turbulence	
and	mixing,	 internal	 tides,	vertical	convection,	coastal	
estuaries	interface	with	open	ocean);
• More direct simulation of sea level changes and tides.

Seamless is also connected to coupling as global coupled 
ocean-atmosphere-land-ice modelling systems are used 
to	 perform	 climate	 change	 projections	 and	 studies,	 from	
decadal	 to	 seasonal	 timescales	 (Hewitt	 et	 al.,	 2017).	 The	
overall	advancements	of	numerics	 in	ocean	dynamics,	bio-
geochemistry,	weather	modelling,	and	hydrology	open	new	
opportunities for coupled systems to address predictions on 
short-range timescales from regional to coastal scales.

In	order	to	establish	a	seamless	marine	information	service,	
integrated	and	unified	ocean	observing	systems	and	seam-
less	 unified	 modelling	 and	 forecasting	 systems	 should	 be	
developed. Integrated ocean observing implies that ocean 
observations made by multiple sectors for all subsystems 
with	multiple	means	-	remote	sensing,	robotics,	and	in-situ	

-	are	 integrated,	while	monitoring	schemes	and	data	man-
agement	are	designed	in	an	unified	way,	so	that	the	observa-
tions,	after	being	integrated	with	the	seamless	models,	will	
be	able	to	fit	users’	purposes.	Furthermore,	ocean	observing	
should be cost effective and sustainable.

The seamless models can be based on mathematical equa-
tions	or	statistical	and	AI	algorithms,	which	simulate	or	em-
ulate marine physical-chemical-geological-biological sys-
tems.	 There	are	 still	 significant	 gaps	 in	 current	 forecasting	
capacity to reach seamless predictability. The development 
of a seamless modelling capacity will be discussed in the 
next	 subsections	 from	 three	aspects:	 space,	 time,	and	sys-
tem of systems. The seamless ocean earth system prediction 
models should be based on UOMs and including atmospher-
ic	models.	Development	of	UOMs	has	been	identified	as	one	
of	the	four	EuroGOOS	research	priorities	(She	et	al.,	2016).	

12.7.1. Optimal use of modelling workforce and 
model consolidation 

A seamless UOM modelling framework should be developed to 
leverage global efforts to enable joint code development. One 
notable feature of the ocean modelling community is the great 
diversity of the models but the very limited research workforce 
for each model. An incomplete survey of ocean circulation 
modelling by EuroGOOS (🔗7)	showed	that	EU	countries	use	
32 ocean models for operational and/or ocean climate model-
ling,	among	which	24	were	developed	in	the	EU	and	8	from	the	
US. Twenty ocean circulation models have been used in Eu-
rope	for	operational	forecasting	(Capet	et	al.,	2020).	In	the	US,	
at least ten ocean models are currently used for operational 
forecasts. If this count would be extended to ocean circulation 
models	developed	and	used	in	other	countries	(i.e.	Australia,	
Canada,	China,	and	Japan)	the	number	of	ocean	models	in	use	
could	be	huge.	 It	 is	well-known	 that	 a	 significant	workforce	
is needed to keep an ocean model at the state-of-the-art. 

7. https://eurogoos.eu/models/

12.7. 
Seamless prediction 

In	conclusion,	it	appears	that	we	are	at	the	beginning	of	an	excit-
ing	phase	in	the	evolution	of	ocean	forecasting	systems,	which	
could deeply transform the entire service offered to users. The 
integration of AI in ocean forecasting systems will require a 
gradual but profound change of the algorithms that constitute 
their underpinnings. This transition will take advantage of the 

wealth	of	expertise	on	ocean	physics,	observing	networks,	and	
user needs available in ocean forecasting centres. It will also 
require developing and nurturing new collaborations with the 
broader	AI	technological	and	scientific	community,	and	benefit	
from the adoption of open science practices.
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However,	each	ocean	modelling	group	has	only	a	very	limited	
workforce for ocean model development. Even though joint or 
community model development has improved the situation for 
a	small	number	of	models,	the	number	of	ocean	model	devel-
opers	is	still	far	from	sufficient	for	most	of	the	models.	There-
fore,	 it	 is	necessary	 to	optimise	 the	use	of	ocean	modelling	
workforces focusing only on a limited number of models. The 
future UOMs can be made so that one model would have op-
tions	with	multiple	coordinates	and	parameterizations,	hence	
emulating different model behaviours. 

Optimal use of modelling workforce should be coordinated 
in	 national,	 regional	 (such	 as	 the	GRAs),	 and	 global	 scales	
so that the UOMs in different scales can be well addressed 
and consolidated with a critical mass of model developers. 
However,	it	is	not	always	possible	to	have	a	critical	mass	of	
model	 developers	 at	 the	 national	 level,	 as	 only	 countries	
with strong national investment in ocean science have such 
a capacity. It is easier to reach a critical mass at the regional 
or	global	levels.	In	fact,	most	of	the	effective	modelling	co-
operation is carried out at regional level. The global co-de-
velopment of models is probably less active due to both ad-
ministrative and political barriers. It is highly recommended 
to strengthen global collaboration on UOM development.

12.7.2. Development of seamless UOM for 
multiple temporal scales 

Predictability	in	an	ocean	earth	system	has	a	multi-scale	feature,	
relating to the spatiotemporal scales of its subsystems as well as 
their	interactions,	which	can	be	divided	into	forcing-based	pre-
dictability,	self-constrained	subsystem	predictability,	and	cou-
pled	system	predictability.	For	atmospheric	systems,	according	
to	the	high-resolution	global	forecast	model	experiments,	the	
upper limit of the self-constrained predictability for determinis-
tic prediction is two weeks. Longer-scale predictability is related 
to	blocking	events	with	time	scales	ranging	from	weeks	to	years,	
e.g.	MJO,	PNA,	NAO,	AO,	ENSO,	QBO,	which	relies	on	interaction	
between atmosphere and ocean-ice systems and solar radiation. 
It is well-known that the surface ocean is mainly dominated by 
forcing-based	predictability,	i.e.	variability	of	waves,	ice	and	sea	
level in synoptic scale are largely determined by weather condi-
tions. Subsurface ocean and sea ice can store forcing signals and 
release them to affect the atmosphere at a “slower” pace. This 
generates longer predictability in the coupled ocean-ice-atmo-
spheric	system.	MJO,	PNA,	NAO,	AO,	and	ENSO	are	all	phenomena	
generated in such a coupled system. As stated by Brian Hoskins 
in the WMO Lecture 20118: “The background provided by the lon-
ger	time-scales	and	by	external	conditions,	and	the	phenomena	
that occur on each range of time-scales in the seamless weath-
er-climate	prediction	problem,	give	the	promise	of	some	predic-
tive power on all time-scales”. 

8.  https://public.wmo.int/en/bulletin/predictability-be-
yond-deterministic-limit 

Most of these long-scale processes can still not be predicted 
successfully by current coupled-system models. UOM devel-
opment is a key to improve the earth system predictability 
in	the	current	stage	as	it	will	provide	insight	knowledge,	as	
well	as	simulate	the	processes	that	the	ocean-ice	system	fil-
ters,	absorbs,	and	 transfers	 the	atmospheric	signals	 into	a	
slow-motion signal and then feeds back to the atmosphere. 

To	reach	breakthroughs	in	longer-scale	predictability,	it	is	im-
portant	to	consider	that:	i)	ocean	earth	system	forecast	is	a	
probability	prediction	problem;	ii)	multi-model	ensemble	has	
shown expanded atmospheric forecasting skills than the de-
terministic	prediction;	 iii)	shorter-scale	phenomena,	although	
constrained	by	longer-scale	ones,	are	also	a	statistical	forc-
ing	to	the	 longer-scale,	 thus	should	not	be	treated	only	as	
noise;	and	iv)	solar	radiation,	volcano	eruption,	and	changes	
of pollutants in both ocean and atmosphere can affect the 
intrinsic signals in the system and then should be included. 
UOM development should address these issues. 

12.7.3. Geographic configurations and 
seamless UOM in space and in a marine system 
of systems

For	 a	 coordinated	 UOM	 development,	 proper	 geographic	
scales	should	be	defined	as	well,	 so	 that	both	scientific	 re-
quirements and collaboration needs are met. Three types of 
forecast	UOMs	can	be	expected:	i)	global-scale	coupled	UOMs	
aiming	at	longer-scale	prediction	of	the	earth	system,	which	
is not necessarily high resolution but should be able to use 
short-scale	as	a	statistical	forcing;	ii)	global	and	regional	scale	
coupled	models	aiming	at	produce	refined	forecast	within	a	
“foreseeable”	time,	e.g.	a	month,	for	which	high	resolution	will	
be	important;	and	iii)	for	“touchable”	spatiotemporal	scale,	i.e.	
inland water-estuary-coastal-regional sea in space and a few 
days in time. It should also be noted that the smaller-scale 
UOMs can be easily applied to long-term forecast applications 
when	forecasts	at	boundaries	are	well	defined.	

The coupled UOMs will mainly be developed for global and 
regional scale to address longer scales from months to sea-
sons.	For	the	regional	scale	coupled	UOMs,	geographic	cov-
erage	 should	be	 sufficiently	 large	 to	 reflect	 impacts	of	 the	
atmosphere-ocean coupling. The resolution of the coupled 
UOMs	can	be	a	few	kilometres	(mesoscale	resolving)	for	global	
scale and hundreds to thousands metres for regional scale to 
resolve sub-mesoscale eddies and narrow straits connecting 
sea	basins.	Therefore	for	regional	scale	coupled	UOMs,	flex-
ible grid and high-performance computing are two basic re-
quirements. For one regional scale there might be more than 
one coupled UOM.  

High resolution is required to provide a seamless prediction 
in	 space.	 For	 example,	 narrow	 straits	 connecting	 two	 large	
water bodies and archipelago water areas may need a res-
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olution	of	 100-1000 m;	 inland	waters-estuary-coastal-open	
sea	continuum,	essential	for	pollutant	transport	modelling,	
nutrient	 cycle,	 and	 carbon	 cycle	 modelling,	 needs	 also	 a	
similar model resolution. An even higher resolution (10-100 
m)	may	 be	 required	when	 dealing	with	 river	 inputs	 to	 the	
sea,	 impact	 of	 flooding,	 hydropower,	 barriers	 to	 pollutant	
transport,	 coastal	 inundation,	 compound	 flooding-surge	
events,	 and	 port	 management.	 Hence,	 a	 spatial	 seamless	
UOM	should	have	flexible	grids,	either	unstructured	grid	or	
dynamic two-way nested grid.

12.7.4. Evolution in short-, mid- and long-term 
perspectives

In	short-	to	mid-term	(3-5	years)	perspectives,	the	objective	
would be to develop a UOM framework and continuous im-
provement of prediction skills of the marine earth system 
models with a forecast range of 10 days to 1 month. The re-
search	should	focus	on:	(i)	establishing	UOM	global	coopera-
tion	framework	to	harmonise,	coordinate,	and	further	evolve	
existing	UOM	development	work;	(ii)	designing	the	UOM	con-
cept,	 framework,	 and	 multiple	 configurations	 for	 different	
scales,	 considering	 international	 cooperation	 and	 sharing	
of	best	practices,	optimal	use	of	workforce,	critical	mass	for	

UOM	development,	code	portability,	relocatability,	scalabili-
ty,	flexibility,	 resolvability,	and	 reducing	 the	 redundancy	of	
models;	 (iii)	 improving	model	 process	 description,	 so	 that	
each UOM sub-model can effectively model major features 
in	the	subsystem;	(iv)	investigate	possibility	for	establishing	
forecasting	 capacity	 in	 emerging	modelling	 areas,	 such	 as	
SPM,	marine	litter,	underwater	noise,	and	fisheries,	and	also	
develop	prototype	pre-operational	models	in	these	areas;	v)	
improving high-performance computing through code mod-
ernization;	(vi)	improving	the	UOM	subsystem	coupling;	and	
(vii)	develop	high-resolution	models	with	flexible	grids	and	
interfaces	with	basin	and	global	scale	models,	as	well	as	re-
solving coastal processes for downstream applications  

In	the	long-term	(10	years),	the	objective	is	to	improve	pre-
diction skills in time scales from months to seasons for cli-
mate,	physical,	and	biogeochemical	 systems,	establish	and	
improve	forecasting	capacity	in	emerging	areas	such	as	SPM,	
marine	litter,	underwater	noise,	and	fisheries.	For	the	ESP	in	
seasonal	and	longer	scales,	coupled	UOMs	including	atmo-
sphere-ocean-wave-ice coupling and ocean-optics-SPM-bio-
geochemical coupling will be developed for ensemble pre-
diction.	UOM	code	will	also	be	optimised	for	efficient	hybrid	
parallel computing. 

12.8. 
Operational forecasting and scenarios in a digital ocean 
A	Digital	Twin	of	the	Ocean	(DTO)	is	a	highly	accurate	model	
of	the	ocean	to	monitor	and	predict	environmental	change,	
human	 impact,	 and	 vulnerability,	 with	 the	 support	 of	 an	
openly accessible and interoperable dataspace that can 
function as a central hub for informed decision making (Fig-
ure	12.3)	 (see	 for	example	🔗9 ).	 	Such	an	 information	sys-
tem consists of one or more digital replicas of the state and 
temporal evolution of the oceanic system constrained by the 
available	observations	and	the	laws	of	physics,	making	im-
perative to integrate a set of models or software that pairs 
the	digital	world	with	physical	assets,	and	 to	 feed	 this	set	
with information from sensors. 

A DTO aims to deliver a holistic and cost-effective solution 
for the integration of all information sources related to seas 
and	oceans,	like	in	situ-data	and	satellite	information	com-
bined	with	 IoT	techniques,	Citizen	science,	state-of-the-art	

9. https://digitaltwinocean.mercator-ocean.eu/

ocean modelling together with AI and HPC resources into a 
digital,	 consistent,	 high-resolution,	multi-dimensional,	 and	
near real-time representation of the ocean. This will result 
in	a	shared	capacity	to	access,	manipulate,	analyse,	and	vi-
sualise marine information. The knowledge generated by 
the	DTO	platform	will	empower	scientists,	citizens,	govern-
ments,	and	industries	to	collectively	share	the	responsibility	
to	monitor,	preserve	and	enhance	marine	and	coastal	hab-
itats,	while	promoting	action	and	 sustainable	measures	 in	
the	framework	of	the	blue	economy	(tourism,	fishing,	aqua-
culture,	transport,	renewable	energy,	etc.),	contributing	to	a	
healthy and productive ocean.
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Figure 12.3. Schematic representation of Digital Twin of the Ocean concept.

12.8.1. Construction of an open DTO  
service platform

To	properly	address	the	construction	of	a	digital	twin,	break-
throughs are needed in various aspects of the digital twin 
information	 system,	 including	 information	 completeness	
and	quality,	 information	access	and	intervention,	as	well	as	
the	underlying	supporting	infrastructure,	tools,	and	services.	
The	operational	pilot	of	DTO,	under	development	at	Europe-
an	level,	will	encompass	the	production	of	a	new	quality	of	
information,	incorporating	human	systems	in	the	prediction	
problem and leveraging advances in information theory and 
digital technologies. Ensembles of simulations combining 
models	 from	 different	 disciplines,	 informed	 by	 spatial	 cor-
relations determined from high-resolution observations and 
by data-driven learning of unknown processes and missing 
constraints,	will	enable	the	DTO	to	reduce	uncertainty	in	esti-
mation	and	forecasting	of	ocean	states,	changes,	and	impacts.	

Enhancing information quality requires a step change in 
computational complexity. This means adequate infrastruc-
ture	including	support	of	very	high	computing	throughputs,	
concurrency,	and	extreme-scale	hardware.	However,	it	is	im-
portant to conceal this complexity so that users can run and 
configure	 involved	 workflows	 and	 access	 the	 information	
but	 without	 requiring	 expert	 intervention.	 In	 addition,	 the	
underlying	models	and	data	need	to	be	scientifically	sound.	

This will require a multi-layered software framework where 
tasks	 like	 simulations,	 observational	 data	 ingestion,	 and	
post-processing are treated as objects that are executed on 
federated	 computing	 infrastructures,	 feed	 data	 into	 virtual	
data	repositories	with	standardised	metadata,	and	from	which	
a heavily machine-learning-based toolkit extracts information 
that can be manipulated in any possible way. The result should 
be	the	provision	of	on-demand,	conveniently	accessible	mod-
elling	and	simulation	products,	data	and	processes	or	MSaaS.

CHAPTER 12. CHALLENGES AND FUTURE PERSPECTIVES IN OCEAN PREDICTION 361



DTO Data Access
& Data Lake

DTO Service
Platform

DTO Engine
HPC & Models

Figure 12.4. DTO Architecture.

12.8.2. Underlying architecture

The multi-layered framework enabling this digital twin ocean 
pilot operational service comprises 3 major interrelated 
structural	elements	(Figure	12.4):	

• A DTO data access layer that mixes results and tools 
from ongoing projects and existing infrastructures with 
new	developments	 targeting	data	 ingestion,	 and	data	
harmonising into a Data lake for subsequent use in the 
DTO engine; 

• A DTO engine comprising a set of modelling capabil-
ities,	including	on-demand	modelling	and	what-if	sce-
nario	modelling	that	fill	the	observational	gaps	in	space	
and	time	 in	a	physically	consistent	way,	and	observa-
tion-driven learning of unknown processes and missing 

constraints,	which	will	enable	to	reduce	uncertainty	in	
estimation and forecasting; 

• A	 DTO	 interactive	 service	 layer	 supplying	 tools,	 li-
braries,	and	interfaces	to	simplify	running	and	config-
uration	of	workflows,	as	well	as	access	to	information,	
including its analysis and visualisation. 
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As described in Chapter 4,	PQ	assessment	is	an	essential	ser-
vice component for any operational oceanographic centre. In 
the	case	of	climate	and	short-term	forecasting	services,	val-
idation	of	ocean	models	 (physical	 and	biogeochemical)	 is	 a	
crucial issue. Despite the continuous progress of the services 
towards	providing	regularly	updated	quality	information,	there	
are	still	gaps	and	deficiencies	 in	the	operational	capacity	to	
assess model solutions. It is still challenging to properly quan-
tify the uncertainties in real time and in a way that is directly 
understandable	and	useful	to	the	users.	Capet	et	al.	(2020),	in	
their review of the operational modelling capacity in European 
Seas,	pointed	out	that	only	20%	of	operational	coastal	model	
services provide a dynamic uncertainty together with the fore-
cast	products.	This	deficit	in	terms	of	operational	model	vali-
dation processes may be mainly linked to the lack of real-time 
access to a local ocean observation network. 

This limitation seems to be partially alleviated within core 
services that have a regional or global focus. In these ser-
vices,	 the	PQ	processes	seems	to	be	favoured	by:	1)	a	wid-
er scope (services dealing not only with forecast models but 
also with the monitoring component and observational data 
products);	2)	a	more	integrated	data	use	(for	instance	through	
data	assimilation	in	ocean	analysis	and	reanalysis	products);	
and	3)	wider	spatial	coverages	(allowing	the	use	of	a	higher	
number of observational data sources to validate model pre-
dictions).	The	Copernicus	Marine	Service	is	one	of	these	core	
comprehensive services and in recent years has built some 
standards for model assessments and delivery of PQ infor-
mation	to	end-users.	This	service,	and	its	evolution	roadmap	
in	terms	of	PQ	processes,	can	illustrate	the	main	expectations	
for the future evolution of validation and quality information 
on operational oceanography products. 

As	described	 in	Sotillo	et	al.	 (2021),	 the	Copernicus	Marine	
Service ensures:

• Standardised processes to assess each product’s sci-
entific	quality	against	appropriate	metrics;
• Product quality information regularly updated and avail-
able	from	a	central	website,	called	the	“PQ-Dashboard”	
(https://pqd.mercator-ocean.fr/);
• Specific	PQ	documentation	delivered	with	each	Coperni-
cus	Marine	Service	product,	completed	by	regularly	updated	
quality	summaries,	including	fit	for	purpose	information,	
and evolving towards peer reviewed technical reports.

From	this	baseline,	the	Copernicus	Marine	Service	Prod-
uct Quality Strategic Plan 🔗10,	identified	a	list	of	developments,	
challenges and opportunities foreseen for the next Coperni-
cus-2	service	phase	period	(2022-2028).	The	availability	of	an	
increasing number of ocean observations should enable and 
support	new	developments,	and	eventually	improve	the	infor-
mation quality associated with oceanographic products. The 
three main working lines  along which the plan will unfold 
are discussed in the following subsections and shown in Fig-
ure	12.5:	 future	observations,	 future	developments	 in	OO	cen-
tres,	and	future	quality	information.	These	lines	are	the	way	
forward for the future development of model validation and 
quality assessment techniques.

12.9.1. New observations for improved quality 
assessment

The use of new satellite products (e.g. from next Sentinel 
missions	or	wide	swath	altimetry)	will	enable	a	significant	
increase	of	data	coverage	towards	higher	resolution,	allow-
ing not only a quality increase but also more validation op-
portunities for a wide range of operational oceanography 
products. The continuation of the BGC-Argo and Deep Argo 
missions and networks are crucial for providing quality in-
formation in areas and on variables that are still highly un-
dersampled. The potential extension of Argo coverage to-
wards coastal areas may also be essential for its important 
socio-economic	impact	and	the	benefit	for	coastal	model	as-
sessments.	In	that	sense,	there	are	some	on-going	initiatives	
in the framework of R&D Projects (such as the Euro-Argo RISE 
H2020	one)	to	test	Argo	on	shelf	extensions,	targeting	shal-
lower waters in European marginal seas. 

Additionally,	 operational	 oceanography	 centres	 should	 im-
prove the effective use of existing observing products and 
networks through:

• Upgrade of PQ processes to properly assess high fre-
quency datasets: PQ metrics are generally computed 
daily.	However,	currently,	and	to	a	greater	extent	in	the	
future,	some	near	real-time	(NRT)	model	product	data-
sets that are delivered with higher frequency (i.e. every 
15	minutes)	would	need	a	dedicated	assessment.	

10.  https://marine.copernicus.eu/about/service-evolu-
tion-strategy 

12.9. 
Quality assessment for intermediate and end users 
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• Enhancement of water mass assessment at synoptic 
scales:	at	present,	sampled	only	partially.	To	improve	
their	characterisation	in	the	upper	ocean,	it	is	neces-
sary to extend the use of available observational plat-
forms	 (i.e.	more	ship	of	opportunity	measurements,	
thermosalinograph/ferry	box	data,	new	glider	oppor-
tunities,	sea	mammals).	Below	2000m,	water	mass	dis-
tributions	are	still	poorly	understood,	and	historical	
data do not guarantee the reliability of existing cli-
matologies.	Deep	floats	and	deep	ocean	observations	
also need to be considered to support global predic-
tion assessment.   

• Promote	the	use	of	data	from	specific	multi-platform	
campaigns	(specially	in	hot	spots):	regular	and	periodic	
campaigns in the same waters are necessary for climate 
monitoring and periodic model assessments (i.e. glider 
periodic	missions	along	straits);	current	measurements	
are also much needed (both Lagrangian and Eulerian 
observations),	not	only	for	temperature	and	salinity.

• Ensure easy access to historic observations: there are 
large amounts of data from research surveys that are 
either not available or available only in operational cat-
alogues. These independent data (in the sense of not 
assimilated)	can	be	crucial	for	assessing	model	perfor-
mance. A progressive integration of this kind of data will 
be	advantageous	for	forecasters,	and	its	“discovery”	is	
foreseen to increase. Access to these sources should be 
automated,	data	 loss	reduced,	and	the	 investment	on	
data collection will be recovered. In the context of Co-
pernicus	Marine	Service,	EMODNET,	EuroGOOS	alliances	
or	other	networks,	it	is	crucial	for	OO	centres	and	data	
providers to connect initiatives and efforts to better in-

tegrate	the	existing	ocean	observing	systems,	as	well	as	
the new expected instruments/observations.

12.9.2. Expected development of quality 
assessment techniques

The use of ensemble data assimilation methods and the ex-
pected increase in the use of prediction systems based on 
model	ensembles	should	significantly	improve	the	quantifica-
tion	of	model	product	uncertainty	using	probabilistic	scores,	
the	evaluation	of	error	propagation,	and	of	model	systematic	
errors and attractors. An increasing number of high-resolution 
observations will be used to characterise model skill at all ob-
served	scales,	while	advanced	statistical	techniques	(such	as	
deep	learning)	should	contribute	to	improve	cross-validation	
capabilities	between	different	types	of	observations,	and	be-
tween observations and models. 

Errors	in	the	ocean	circulation	models,	in	particular	on	ver-
tical	transport	and	mixing,	strongly	impact	the	coupled	bio-
geochemical	model	solutions.	Thus,	monitoring	errors	in	key	
parameters of the physical forcing should characterise errors 
(their	 causes)	 and	 subsequent	 impacts	 in	 biogeochemical	
solutions. The mixed layer depth variable is a typical exam-
ple of this due to its impact on biogeochemistry processes.

Quality assessment of model downscaling should be eased 
in the future by advances in integrated systems (following 
on the idea of monitoring uncertainties “propagating” along 
the	 value	 chain).	 The	 added	 value	 of	 downscaling	 (higher	
resolution with better representation of the ocean process-
es)	needs	 to	be	assessed	 through	a	more	systematic	 com-
parison of global vs. regional and coastal models. To this 
aim,	alternative/innovative	validation	metrics	are	needed	for	

Figure 12.5. New	observations	enable	new	developments	in	operational	oceanography	centres,	which	will	
also	benefit	from	growing	computational	resources	and	advanced	AI	and	big	data	techniques.	This	will	allow	
significant	improvements	of	the	quality	information,	improving	its	relevance	and	its	frequency.
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The	first	operational	phase	2014-2021	of	 the	Copernicus	Ma-
rine Service has successfully implemented a service chain 
devoted	to	ocean	information,	involving	committed	producers	
throughout	Europe,	and	serving	expert	users	worldwide.	The	
Copernicus Marine Service will develop an ambitious 7-year 
plan	 (Copernicus	 2,	 2021-2027)	 with	 staged	 implementation	
that	answers	to	increasing	user	and	policy	(e.g.	EU	Green	Deal)	
needs. The objective is to fully embrace the capabilities of new 
digital services and implement the next generation of ocean 
monitoring and forecasting for the Blue/White/Green ocean.

Copernicus Marine Service products and services are deliv-
ered	by	means	of	 state-of-the-art,	user-oriented,	 scientific	
and	 technical	 methodologies,	 which	 induces	 openness	 to	
newly developing ideas and associated capacities. Apart 
from	guaranteeing	service	continuity,	the	Copernicus	Marine	
Service is continuously evolving to ensure that its services 
and products remain state-of-the-art and meet a wide range 

of existing and emerging user and policy needs related to 
all	marine	and	maritime	sectors:	maritime	safety,	coastal	en-
vironment	monitoring,	trade	and	marine	navigation,	fishery,	
aquaculture,	marine	renewable	energy,	marine	conservation	
and	biodiversity,	ocean	health,	climate	and	climate	adapta-
tion,	recreation,	education,	science	and	innovation.

The	 following	major	 improvements	 of	 current	 products,	 as	
well	as	new	products	benefiting	from	science	and	technology	
advances,	are	already	planned	to	ensure	an	enhanced	con-
tinuity	of	the	service,	keeping	the	service	at	the	state-of-art	
and	at	internationally	competitive	and	fit	for	purpose	stan-
dards,	 considering	 the	 European	 policies’	 priorities	 (Green	
Deal,	 Common	Fisheries	Policy,	Marine	Strategy	 Framework	
Directive,	and	Convention	on	Biological	Diversity):

• High	 resolution	monitoring,	modelling,	 and	 forecast-
ing of the blue ocean with an increase of the horizontal 

12.10. 
Expected future evolution of Copernicus Marine Service 
products and services

model assessment that avoid double penalty when compar-
ing	different	resolution	models	(Ebert,	2009).	More	relevant	
skill	 scores	 are	 needed	 for	 forecasting,	 implementing	 new	
approaches	to	validate	and	inter-compare	new	physical,	and	
biogeochemical model products at very high-resolution.

Finally,	 there	 is	 a	 growing	 need	 to	 identify	 and	 understand	
long-term trends in ocean parameters and their impact at re-
gional to coastal scale. The validation of such signals is chal-
lenging for physical and even more for biogeochemical param-
eters,	such	as	carbon,	oxygen,	and	ocean	acidification,	which	
are of great interest on both regional and global scales. It is 
crucial to improve the validation methodology and to increase 
the number of reference observations as much as possible.

12.9.3. Quality information communication 
improvements

There	is	an	increasing	demand	for	regional	fit	for	purpose	
assessments,	especially	in	coastal	areas.	The	quality	infor-
mation content must evolve following users’ needs. The cur-
rent OceanPredict product quality metric monitoring has to 
be	complemented	with	process-	(and	user-)	oriented	met-
rics,	and	better	quantification	of	uncertainties.	Probabilis-
tic scores and robustness assessments with multi-product 

(model	and	observed)	 intercomparisons	should	help	an-
swer many user requirements. The use of application-ori-
ented	metrics,	 such	as	 Lagrangian	drift	metrics	or	 “event	
oriented” metrics (e.g. categorical scores based on thresh-
olds)	should	also	be	generalised.	

The collaboration among forecasting services to agree on in-
ternational validation standards must continue. Collabora-
tion between forecast services and users should result in the 
introduction of new user-oriented metrics to be considered 
as local case studies and validation “benchmarks”. 

Operational oceanography centres will have to develop both 
high-level summarised quality information and high-resolution 
uncertainty estimates to be delivered alongside the products 
following	 FAIR	 guidelines,	 as	 initiated	by	 Peng	 et	 al.	 (2021a,	
2021b).

High-level	 quality	 summaries,	 such	 as	 product	 “maturity	
matrices”,	will	guide	users	 to	choose	the	most	appropriate	
product	 for	 a	 given	use,	while	 the	uncertainty	 information	
delivered alongside the product will enable the access to tai-
lored	product	quality	information,	as	a	valuable	addition	to	
many oceanographic applications. 
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resolutions of the current systems by a factor of at least 
3	(e.g.	global	1/36°,	regional	1/108°).	Coupling	and	inter-
action	with	waves,	sea	ice,	atmosphere,	biogeochemistry,	
and rivers will also be implemented for improved ocean 
forecasts. New high-resolution sea level observations 
from	the	SWOT	wide	swath	altimeter	mission,	new	ocean	
topography,	 sea	 surface	 temperature,	 salinity	 from	 the	
Sentinel,	HPMC,	CRISTAL,	and	CIMR	missions	will	be	 in-
cluded as observational products. These improvements 
will impact the different Copernicus Marine Service areas 
and	their	key	applications:	maritime	security	and	safety,	
maritime	 transport,	 pollution	 monitoring	 and	 offshore	
operations,	and	coastal	zone	monitoring	and	forecasting.

• Probabilistic	 forecasting	 and	 extended	 (1-month)	
forecasts	based	on	model	ensembles,	allowing	a	better	
characterization of model uncertainties in analyses and 
forecast. Data assimilation techniques will evolve to-
ward more multivariate schemes to constrain in a more 
extended and coherent way the different inanimate 
components	 of	 the	marine	 environment	 (physics,	 sea	
ice,	and	biogeochemistry).	Coupled	ocean/atmosphere	
data assimilation will also be implemented. Probabilis-
tic forecasts will be instrumental for early warning sys-
tems,	and	to	support	decision-making	based	on	opera-
tional	products	by	better	characterising	the	confidence	
level associated with the provided information.

• Reanalyses of the 20th century physical and biogeo-
chemical data for the global ocean and the European 
regional	 seas,	 assimilating	 historical	 in-situ	 obser-
vations (e.g. sea surface temperature and tige gauges 
mainly	for	the	first	half	of	the	century	and	temperature	
and	salinity	profiles	from	1950	onwards).	The	purpose	
of these reanalyses is to better assess the past evolu-
tion of the ocean in response to climate change and to 
better monitor Essential Ocean Variables and Essential 
Climate Variables related to the ocean.

• Step	changes	in	Arctic	Ocean	monitoring,	modelling,	
and	 forecasting	 through	 upgrade	 in	 sea-ice	 models,	
improved coupling with the atmosphere and hydrology 
(river	discharge	and	nutrient	loads),	higher-resolution,	
extended	 forecasting	 ranges	 from	a	week	 to	a	month,	
and ensemble forecasting for an improved characteriza-
tion of forecasting uncertainties. Provision of icebergs’ 
forecasts will complement the information produced 
for ice services. Improved satellite products on sea-ice 
detection and a pan-Arctic ice chart will complete the 
offer. These evolutions will address user needs regard-
ing	maritime	 transport	 (e.g.	 ship	 routine)	 and	marine	
safety	 in	sea-ice	and	 iceberg	 infested	regions,	marine	
resources	 (fisheries	 and	 conservation)	 and	 climate	
change impact in the Arctic.

• Air/sea	 fluxes	 of	 CO2	monitoring	 and	modelling,	 in-
cluding advanced modelling/data assimilation systems 
at global and regional scales as well as including er-
ror estimations. Foreseen developments also include 
processing and quality control of novel in-situ obser-
vations from the BGC Argo array and improvement of 
observation-based products derived from Neural Net-
work methods. These evolutions are required by the Co-
pernicus anthropogenic CO2 service as well as for blue 
carbon monitoring.

• Coastal zone monitoring and forecasting with im-
proved capacities to link and co-production between 
coastal systems with Copernicus Marine Service up-
stream systems. Consistency and river-ocean conti-
nuity will be ensured by using standardised methods 
to	couple	hydrological	models	(for	river	run-offs)	with	
global,	regional,	and	coastal	ocean	models.	Time-series	
(past,	present,	forecasts)	of	standardised	modelled	riv-
er	discharges	of	freshwater,	nutrients,	particulate,	and	
dissolved matter will be provided. Coastal zone mon-
itoring will also be enhanced through satellite obser-
vations	–	based	on	Sentinel	(especially	S1,	S2,	S3,	and	
S6)	and	other	missions	-	for	nearshore	bathymetry	and	
shoreline	position	and	their	evolution,	high-resolution	
winds,	 spectral	wave	 information,	detection	of	plastic	
debris,	monitoring	of	marine	 litter,	 ecosystems,	water	
quality,	 and	 sea	 surface	 temperature.	 Given	 the	 huge	
social,	economic,	and	biological	value	of	coastal	zones,	
these improvements will contribute to a wide range of 
applications	(coastal	zone	management,	climate	adap-
tation,	 coastal	 modelling,	 aquaculture	 and	 fisheries,	
navigation	and	shipping,	marine	renewable	energy,	oil	
spill	management	and	search	and	rescue),	 supporting	
various policies and resilience to climate change.

• Marine biology monitoring and forecasting with ma-
jor improvement in numerical models to represent 
processes	 (e.g.	 benthic/pelagic	 coupling,	 riverine	 in-
puts)	 increasing	 accuracy,	 advanced	 data	 assimilation	
techniques (e.g. combining state and parameter esti-
mation),	 and	 new	 modules	 linking	 optical	 properties	
in the near-surface ocean to biomass to better couple 
ocean colour and subsurface data from in-situ such as 
BGC Argo. End-to-end ecosystem modelling will also be 
included to link along the food web low trophic levels 
(e.g.	 plankton)	 to	 mid-trophic	 levels	 (e.g.	 micronek-
ton),	 and	 to	 high-trophic	 levels	 (e.g.	 predator	 fishes	
and	marine	mammals).	Marine	biology	monitoring	will	
also be enhanced through the improvement of gather-
ing,	processing,	quality	control,	and	characterization	of	
biogeochemical and marine biology in-situ (e.g. optical 
and	acoustic	sensors)	and	satellite	(e.g.	S2,	S3	and	hy-
perspectral)	 observations	 in	open	and	 coastal	 oceans.	
These products will support international and European 
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At	the	beginning	of	the	third	millennium,	ocean	science	was	
largely	 competent	 for	diagnosing	problems.	However,	 its	
ability to offer solutions of direct relevance to sustainable 
development requires a massive upgrade. 11 12

The world needed a large-scale and adequately resourced 
campaign to transform ocean science empowering and engag-
ing	stakeholders	across	disciplines,	geographies,	generations,	
and	genders,	and	of	sufficiently	 long	duration	to	deliver	the	
lasting	change	that	is	required.	In	2016,	the	IOC	of	UNESCO	
(🔗13)	initiated	a	concept	for	this	campaign.	In	December	2017,	
this work culminated in the proclamation by the 72nd Session	of	
the UNGA of the UN Decade of Ocean Science for Sustainable 
Development	2021-2030	(referred	to	as	‘the	Ocean	Decade’).	
UNGA called on the IOC to prepare an Implementation Plan for 
the	Ocean	Decade	in	consultation	with	Member	States,	United	
Nations	partners,	and	diverse	stakeholder	groups.

In	2021,	the	United	Nations	launched	the	Ocean	Decade	(2021-
2030)	(🔗14)	whose	aim	is	to	‘support efforts to reverse the 

11.	 	https://marine.copernicus.eu/sites/default/files/me-
dia/pdf/2021-09/CMEMS%20Service_evolution_strategy_RD_
priorities_v5-June-2021.pdf	
12.  http://marine.copernicus.eu/science-learning/ser-
vice-evolution/about-stac 
13. https://ioc.unesco.org/
14. https://www.oceandecade.org

cycle of decline in ocean health and gather ocean stakehold-
ers worldwide behind a common framework that will ensure 
ocean science can fully support countries in creating improved 
conditions for sustainable development of the Ocean’. In this 
framework,	the	IOC	plays	an	important	role:	it	coordinates	the	
Decade’s	design	and	preparation,	 identifies	programmatic	
contributions,	and	implements	the	Decade.

The vision of the Ocean Decade is ‘the science we need for 
the ocean we want’. The mission is ‘to catalyse transforma-
tive ocean science solutions for sustainable development, 
connecting people and our ocean’.

Seven outcomes describe what should be the ‘ocean we 
want’ at the end of the Ocean Decade:

1. A clean ocean where sources of pollution are identi-
fied	and	reduced	or	removed.
2. A healthy and resilient ocean where marine ecosystems 
are	understood,	protected,	restored	and	managed.
3. A productive ocean supporting sustainable food sup-
ply and a sustainable ocean economy.
4. A predicted ocean where society understands and can 
respond to changing ocean conditions.
5. A safe ocean where life and livelihoods are protected 
from ocean-related hazards.
6. An accessible ocean with open and equitable access to 
data,	information	and	technology	and	innovation.

12.11.The United Nations Decade of Ocean Science for 
Sustainable Development

Union	objectives	in	terms	of	biodiversity,	development	
of	sustainable	food	resources,	water	quality,	assessment	
of blue carbon in the overall carbon stake accounting.

• Long-term projections of the marine environment (both 
physics,	biogeochemistry,	and	marine	ecosystems)	under	
climate change from global to regional scales (downscal-
ing	of	climate	scenarios),	and	associated	consequences	
for	main	stocks	of	exploited	fishes.	These	products	will	
support climate assessments for decision-making on 
adaptation  and mitigation of climate risks (e.g. coastal 
floods,	surges,	etc.).

• Enhanced digital services with online cloud processing 
capabilities for manipulating and processing data with 
advanced	analytics	and	scientific	computing	software	(e.g.	

artificial	intelligence	toolboxes),	access	to	Sentinel	Level	
1&2	data,	marine	data	(e.g.	from	EMODnet,	SAF,	etc.),	and	
connection to HPC computing nodes. This will consoli-
date the Copernicus Marine Service as a one-stop shop 
for operational and digital ocean services.

A document 🔗11 presenting the Copernicus Marine Service 
Evolution Strategy for R&D priorities has been prepared by 
its STAC 🔗12 and reviewed by MOI. This document details the 
expected future products and services by Copernicus Marine 
Service and the required developments. It is a living doc-
ument,	 as	 it	 is	 updated	periodically	 according	 to	 feedback	
from	users	and	policy	needs,	the	status	of	scientific	devel-
opments achieved within and outside the Copernicus Marine 
Service	community,	and	to	the	high-level	Copernicus	Marine	
Service evolution strategy. 
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7. An inspiring and engaging ocean where society un-
derstands and values the ocean in relation to human 
wellbeing and sustainable development.

The	 decade	will	 be	 implemented	 via	 “Actions”,	 which	 are	
the tangible initiatives that will be carried out across the 
globe	 over	 the	 next	 ten	 years	 to	 fulfil	 the	 Ocean	 Decade	
vision. They will be implemented by a wide range of propo-
nents,	 including	 research	 institutes	 and	universities,	 gov-
ernments,	 UN	 agencies,	 intergovernmental	 organisations,	
other	 international	 and	 regional	 organisations,	 business	
and	 industry,	 philanthropic	 and	 corporate	 foundations,	
NGOs,	educators,	community	groups	or	individuals.	Actions	
can	be	implemented	by	promoting	Activities,	Contributions,	
specific	Programs	or	Projects.	

The Ocean Decade will involve a large number of partners 
and	actors	around	 the	world,	and	hence	 it	 cannot	be	 rig-
idly	governed.	A	simple,	robust	coordination	structure	will	
manage	day-to-day	implementation.	The	DCU,	to	be	locat-
ed	 at	 the	 IOC	 Secretariat,	 will	 be	 the	 central	 hub	 for	 the	
coordination of Ocean Decade activities. Governments or 
partners will host a number of Decade Coordination Of-
fices	and	DCCs	–	referred	to	as	decentralised	coordination	
structures – that will be located in different regions around 
the world. These structures will help to coordinate efforts 
between	 national,	 regional,	 and	 global	 initiatives,	 share	
knowledge	and	tools	developed	through	the	Ocean	Decade,	
create	links	between	potential	Decade	partners,	and	moni-
tor and report on the impact of the Decade. One DCC will be 
devoted to Ocean Prediction 🔗15.

The following subsections describe some examples of Ac-
tions and Collaborative Centres that will be linked to OOFS.

12.11.1. The Decade Collaborative Centre for 
Ocean Prediction

DCCs serve as the main interface between Decade Actions 
and the DCU at the IOC-UNESCO Secretariat. MOI has been 
selected to host the DCC for Ocean Prediction. It will provide:

• A communication and collaboration hub bringing to-
gether Decade programmes with ocean prediction activi-
ties,	institutes,	and	organisations	outside	of	the	Decade;

• A global technical and organisational structure to 
establish	a	pilot	 for	a	Global	Ocean	Data	Processing,	
Modelling,	and	Forecasting	System,	building	on	the	in-
novations generated by the Decade programmes and 
other	national,	regional,	and	international	partners.

15.  https://www.oceandecade.org/news/decade-collabo-
rative-centres-to-provide-focused-regional-and-themat-
ic-support-for-decade-actions/

The DCC for Ocean Prediction will ensure that the efforts of 
multiple Decade programmes combine to meet Decade ob-
jectives and that innovations are integrated into operational 
ocean forecasting systems through a harmonised global net-
work with shared information and services.

12.11.2. CoastPredict Program

The	University	of	Bologna	(Italy)	was	selected	for	another	the-
matic DCC which will focus on coastal resilience in a changing 
climate. The same University is also leading the CoastPredict 
Programme that was endorsed as a Decade Programme of 
Ocean	Science	in	June	2021.	

CoastPredict is one of the 3 Programmes co-designed with 
GOOS,	and	 it	has	the	purpose	of	revolutionising	the	global	
coastal ocean observing and forecasting sector (🔗16).	 The	
high-level objectives of CoastPredict are:

1. A predicted global coastal ocean;
2. The	upgrade	to	a	fit	for	purpose	oceanographic	infor-
mation infrastructure;
3. Co-design and implementation of an integrated coastal 
ocean observing and forecasting system adhering to best 
practices	and	standards,	designed	as	a	global	framework,	
and implemented locally.

The Global Coastal Ocean is a concept central to the trans-
formative science pursued by CoastPredict. CoastPredict 
will	re-define	the	concept	of	the	Global	Coastal	Ocean	that	
was	 firstly	 described	 as	 follows	 by	 Robinson	 and	 Brink	
(2006; concept developed in volumes 10 to 14 of “The Sea” 
series):	 ‘the coastal ocean – that area, extending inshore 
from the estuarine mouths to river catchments affected by 
salt waters and offshore from the surf zone to the continen-
tal shelf and slope where waters of continental origins meet 
open ocean currents.’

According	to	this	concept,	all	coastal	ocean	regions	are	an	in-
terface	area	where	atmosphere,	land,	ice,	hydrology,	coastal	
ecosystems,	 open	 ocean,	 and	 humans	 interact	 on	 a	multi-
plicity of space and time scales that need to be resolved with 
a	proper	observing	and	downscaling	methodology,	including	
the consideration of uncertainties. 

The legacy of CoastPredict will be new science for the observ-
ing	systems,	and	new	methods	for	the	development	of	reli-
able predictions extending as far as possible into the future 
to	solve	problems	co-defined	with	stakeholders.	Additional-
ly,	it	will	enhance	the	capacity	to	formulate	R2O	practices,	a	
new set of coastal observing and modelling standards for all. 
This will go hand-in-hand with the organisation and upgrade 
of the basic global ocean information infrastructure for open 

16. https://www.coastpredict.org/
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and free access to coastal information using standards and 
best practices. 

CoastPredict will capitalise on three previous major interna-
tional initiatives:

1. GOOS Coastal observation panels (i.e. COOP and  suc-
ceeding	PICO).	COOP	started	in	2000	to	define	a	strategy	
for integrated observing and forecasting in the coastal 
areas. One of the main outcomes was the recommenda-
tion	 that	 a	 global	 network	 of	 observations,	 data	 com-
munications,	data	management,	and	data	analysis/fore-
casting should be secured providing economies of scale. 
Another important COOP/PICO outcome was the initial 
definition	 of	 common	 variables	 to	 be	 monitored	 and	
forecasted	in	the	coastal	areas.	However,	PICO’s	work	did	
not continue because the international ocean observing 
network was not adequately organised and technology 
was	not	yet	ready	for	data	collection	on	biogeochemistry,	
biodiversity,	and	other	marine	environmental	variables.	
Furthermore,	 the	 satellite	observing	 system	 for	 coastal	
areas was still under development (except for coastal 
ocean	colour).

2. OceanPredict and its COSS-TT. OceanPredict organised 
the global ocean observation uptake for the develop-
ment of global and regional forecasting systems. In ad-
dition,	OceanPredict/COSS-TT	defined	 the	 international	
quality	 control	 standards	 for	 ocean	 analyses,	 reanaly-
ses,	and	 forecasts	 in	 the	coastal	ocean	and	shelf	seas.	
COSS-TT promoted the use of OceanPredict large scale 
products for seamless integration of ocean to coastal 
forecasting,	 defined	 the	 state-of-the-art	 methodology	
for	 downscaling,	 data	 assimilation,	 array	 design	 in	 the	
coastal/shelf areas. COSS-TT focuses on advancing sci-
ence in support of coastal forecasting and is one of the 
backbones of CoastPredict. 

3. The	JCOMM.	From	2000	to	2019,	JCOMM	has	coordinat-
ed	 ocean	 observing	 networks,	 in	 particular	 the	 GLOSS	
network for tide gauges and the HF radar network. Fur-
thermore,	it	started	to	develop	coastal	services	for	wave	
and	storm	surges	by	meteorological	offices	in	developing	
countries.	Moreover,	it	has	coordinated	the	development	
of	marine	environmental	emergency	services.	However,	
such	 developments	 led	 by	 JCOMM	were	 not	 fully	 inte-
grated and connected with the growing oceanographic 
research communities of OceanPredict and COSS-TT. 
While the observing systems and the large-scale ocean 
forecasting	 systems	are	now	 coordinated	 in	GOOS,	 the	
coastal downscaling and forecasting research develop-
ments are not currently connected to coastal services.

All these activities have been partly disconnected and have 
not produced a global international network bringing to-

gether	the	fragmented	scientific	communities	for	advancing	
the research on the global coastal ocean. New advances that 
make a science-focused programme such as CoastPredict ur-
gent	and	achievable	are:	a)	operational	oceanography	is	now	
implemented	from	the	global	to	the	regional	scales,	making	
available open and free data for coastal downscaling; and 
b)	major	technology	advancements	have	taken	place	in	ob-
serving,	from	satellites	to	in-situ	robotics	to	the	use	of	Arti-
ficial	Intelligence,	which	makes	the	monitoring	of	the	coastal	
ocean practical and feasible. CoastPredict will capitalise on 
this game-changing operational oceanography framework 
and	extend	to	coastal	predictive	capabilities,	including	the	
land-water	cycle	(rivers,	underground	and	transitional	wa-
ters)	and,	 for	 the	first	 time,	 integrating	the	coastal	ocean,	
through	estuaries	and	rivers,	with	the	“urban	ocean”	(waters	
within	and	around	coastal	cities).

CoastPredict will be implemented through several projects 
focusing on 6 areas:

• Focus Area 1 - Integrated Observing and Modelling for 
short term coastal forecasting and early warnings. This 
area will contribute to Ocean Decade Challenge 6 ‘In-
crease community resilience to ocean hazards’: enhance 
multi-hazard	early	warning	services	 for	all	geophysical,	
ecological,	biological,	weather,	climate	and	anthropogen-
ic	 related	 ocean	 and	 coastal	 hazards,	 and	mainstream	
community preparedness and resilience (🔗17).		

• Focus Area 2 - Future Coastal Ocean climates: Earth 
system observing and modelling. This area will contrib-
ute to Challenge 5 ‘Unlock ocean-based solutions to cli-
mate change’: enhance understanding of the ocean-cli-
mate nexus and generate knowledge and solutions to 
mitigate,	 adapt	 and	 build	 resilience	 to	 the	 effects	 of	
climate	change	across	all	geographies	and	at	all	scales,	
and to improve services including predictions for the 
ocean,	climate	and	weather.

• Focus Area 3 - Solutions for Integrated Coastal Man-
agement. This area will contribute to Challenge 8 ‘Create a 
digital representation of the Ocean’: through multi-stake-
holder	 collaboration,	 develop	 a	 comprehensive	 digital	
representation	of	 the	ocean,	 including	a	dynamic	ocean	
map,	which	provides	free	and	open	access	for	exploring,	
discovering,	and	visualising	past,	current,	and	future	ocean	
conditions in a manner relevant to diverse stakeholders. 

• Focus area 4 - Coastal Ocean and Human Health. This 
area	does	not	match	with	a	specific	Decade	Challenge	but	
it is cross-cutting to all the 10 Challenges. 

17. https://www.oceandecade.org/challenges/
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• Focus Area 5 - Coastal Information integrated in the open 
and free exchange international infrastructure. This area 
will contribute to Challenge 7 ‘Expand the Global Ocean Ob-
serving System’: ensure a sustainable ocean observing sys-
tem	across	all	ocean	basins	that	delivers	accessible,	timely,	
and actionable data and information to all users. 

• Focus Area 6 - Equitable coastal ocean capacity. This 
area	will	contribute	to	Challenge	9	‘Skills,	knowledge	
and technology for all’: ensure comprehensive capacity 
development	and	equitable	access	to	data,	informa-
tion,	knowledge	and	technology	across	all	aspects	of	
ocean science and for all stakeholders.

12.11.3. ForeSea Program

ForeSea is hosted by OceanPredict (🔗18),	a	science	programme	
for the coordination and improvement of global and regional 
ocean analysis and forecasting systems. ForeSea aims to build 
the next generation of ocean predictions pursuing a strong co-
ordination	of	the	scientific	community	and	institutes	at	the	
international level (🔗19).	Its	main	goals	are:

• To	improve	the	science,	efficiency,	use,	and	impact	of	
ocean prediction systems; 

• To	build	a	seamless	ocean	information	value	chain,	
from	observations	to	end	users,	able	to	support	the	
economy and society.

ForeSea 🔗20 focuses on 2 main themes:

1. Catalysing transformative ocean prediction science solu-
tions	for	sustainable	development,	connecting	people	and	
ocean prediction;
2. Increasing impact and relevance: improving science and 
science capacity for the ocean we want.

Such themes are developed through a number of items. In 
theme 1 they span from integrating forecasts of ocean hazards 
with socioeconomic forecasts for supporting policy and man-
agement to maximisation of the impact and value of observa-
tions,	from	capacity	building	and	training	to	contribution	to	a	
digital	ocean.	In	theme	2,	they	cover	from	usage	of	advanced	
ocean prediction technologies in weather and climate predic-
tions	 to	 coupled	systems	 (in	partnership	with	CoastPredict),	
from	usage	of	Earth	system	models	(ESM)	to	development	of	
limited ESM areas with coupled components to improve model 
predictability	(in	collaboration	with	CoastPredict).

18. https://oceanpredict.org/
19. https://oceanpredict.org/foresea/
20. https://oceanpredict.org/foresea/foresea-planned-activities/ 

Expected outcomes21 are considerable as ForeSea should 
contribute to:

• An operational oceanography information value-chain 
where	verified/certified	information	and	knowledge	are	
exchanged freely enabling all operational oceanograph-
ic	components,	 integrated	from	the	open	ocean	to	the	
coastal	areas,	to	effectively	synergize;
• A continuously optimised ocean observing system 
integrated from the open ocean to the coastal areas 
that	provides	maximum	information	benefit	with	man-
ageable cost;An ocean information delivery system that 
provides the right information at the right time for facil-
itating marine decisions in support of human safety and 
environmental	 safety,	 and	 an	 efficient	 and	 sustainable	
blue economy;
• Improved extended range forecasting capabilities for 
ocean prediction systems;
• Better assessment and prediction of the ocean state 
(including	 reliable	 uncertainty	 estimates)	 and	 ocean	
impact on forecasts of other earth system components 
(e.g.	atmosphere,	ice,	waves,	marine	ecosystems,	estu-
aries,	etc.);
• An informed ocean literate society and global economy;
• Coordinated capacity building across all elements of 
the operational oceanography value chain to sustain 
production and delivery of ocean prediction;
• Demonstrated impact and value of predictions for 
coastal communities;
• Effective use of ocean prediction technologies for 
weather and climate predictions.

To	 facilitate	 realisation	of	 the	expected	outcomes,	 ForeSea	
established	through	OceanPredict	 	connections	with	GOOS,	
WMO,	IOC,	JCOMM,	Argo,	GHRSST,	GEO,	and	GEO	BluePlanet.

21.  https://oceanpredict.org/foresea/foresea-expect-
ed-outcomes/ 
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Models

FAIR Findability,	accessibility,	interoperability,	 
and reusability

FAO Food and Agriculture Organisation

FDM Finite Difference Method

FEM Finite Element Method

FESOM Finite-Element/volumE Sea ice-Ocean Model

FESOM Finite Element Solution

FNMOC Fleet Numerical Meteorology and 
Oceanography Centre

FRAC Full Resolution Area Coverage

FSS Fraction of Skill Score

FVCOM Finite Volume Community Ocean Model

FVCOM Finite-Volume Coastal Ocean Model

FVM Finite Volume Method

FYI First-year Ice

GAC Global Area Coverage

GBN Global Buoy Network

GCOS Global Climate Observing System

GDAC Global Data Assembly Centre

GDP Global Drifter Program

GDP Gross Domestic Product

GEO Group on Earth Observations

GFDL Geophysical Fluid Dynamics Laboratory

GFLOPS giga FLOPS

GFS Global Forecasting System

GHFRN Global High Frequency Radar Network

GHG Greenhouse Gas

GHRSST Group for High Resolution Sea  
Surface Temperature

GIS Geographic Information System

GLO-PHY Global Ocean Forecasting System

GLODAP Global Ocean Data Analysis Project

GLOFAS Global Flood Awareness System

GLOSS Global Sea Level Observing System

GNOME General NOAA Operational  
Modelling Environment

GNSS Global Navigation Satellite System

GODAE Global Ocean Data Assimilation Experiment

GOOS Global Ocean Observing System

GPU Graphics Processing Unit

GRDC Global Runoff Data Centre

GSHHG Global	Self-consistent,	Hierarchical,	 
High-resolution Geography Database

GTS Global Telecommunication System

HAB Harmful Algal Bloom

HadOCC Hadley Centre Ocean Carbon Cycle Model

HF High Frequency

HPC High Performance Computing

HTL Higher Trophic Level

HYCOM Hybrid Coordinate Ocean Model

I/O Input/Output

IABP International Arctic Buoy Program

IBI Iberian-Biscay-Irish

IBM Individual-Based Model

ICCAT International Commission for the 
Conservation of Atlantic Tunas

ICESat Ice,	Cloud,	and	land	Elevation	Satellite

ICZM Integrated Coastal Zone Management

IEO Instituto	Español	de	Oceanografía

IFS Integrated Forecasting System

IHO International Hydrographic Organization

IIEE Integrated Ice Edge Error

IMO International Maritime Organization

INCOIS Indian National Centre for Ocean 
Information Services

INS In-Situ
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IOCCG International Ocean Colour  
Coordinating Group

IOCCP International Ocean Carbon  
Coordination Project

IOC Intergovernmental Oceanographic 
Commission

IOOS Integrated Ocean Observing System

IOP Inherent Optical Property

IoT Internet of Things

IPCC Intergovernmental Panel on Climate Change

ITD Ice Thickness Distribution

ITIC International Tsunami Information Center

ITU International Telecommunications Union

JAXA Japan	Aerospace	Exploration	Agency

JCOMM Joint	Technical	Commission	for	
Oceanography and Marine Meteorology

JEDI Joint	Effort	for	Data	assimilation	Integration

JMA Japan	Meteorological	Agency

JPL Jet	Propulsion	Laboratory

JPSS Joint	Polar	Satellite	System

KPI Key performance indicators

LEO Low Earth Orbit

LiDAR Laser Imaging Detection and Ranging

LKF Linear Kinematic Features

LOCEAN Laboratoire	d’Océanographie	et	du	Climat:	
Expérimentation	et	Approches	Numériques

MEAP-TT Marine Ecosystem Analysis and Prediction 
Task Team

MedFS Mediterranean Forecast System

MEDUSA Model	of	Ecosystem	Dynamics,	nutrient	
Utilisation,	Sequestration	and	Acidification

MEOP Marine Mammals Exploring the Oceans  
Pole to Pole

MFC Monitoring and Forecasting Centre

MFWAM Météo-France	WAve	Model

MISST Multi-sensor Improved Sea Surface 
Temperature

MITgcm MIT general circulation model

MIZ Marginal Ice Zone

MJO Madden-Julian	Oscillation

ML Machine Learning

MLD Mixed Layer Depth

MODIS Moderate Resolution Imaging 
Spectroradiometer

MOI Mercator Ocean International

MOM Modular Ocean Model

MOTHY Modèle	Océanique	de	Transport	
d’HYdrocarbures

MPA Marine Protected Area

MPAS Model for Prediction Across Scales

MPQ Model product quality

MSaaS Modelling and Simulation as a Service

MSE Mild-slope equation

MSP Maritime Spatial Planning

MTCSWA Multi-platform Tropical Cyclone Surface 
Winds Analysis

MY Multi	Year

MYI Multiyear Ice

NAO North Atlantic Oscillation

NAVOCEANO US	Naval	Oceanographic	Office

NcML NetCDF Markup Language

NDBC National Data Buoy Center

NEMO Nucleus for European Modelling  
of the Ocean

NGO Non-governmental organization

NIVA Norwegian Institute for Water Research

NOAA National Oceanic and Atmospheric 
Administration

NODC National Oceanographic Data Centres

NORWECOM Norwegian Ecological Model

NPP Net Primary Production

NRT Near-Real-Time

NSIDC DAAC National Snow and Ice Data Center 
Distributed Active Archive Center

NSR Northern Sea Route

NSWE Non-linear Shallow Water Equations

NWP Numerical weather prediction

NWS North West Shelf

OBC Open Boundary Condition

OC Ocean Colour

OC Ocean Colour

ODV Ocean Data View

OGCM Ocean general circulation model

OI Optimal Interpolation

OMI Ocean Monitoring Indicator

ONR Office	of	Naval	Research

OO Operational Oceanography

OOFS Operational Ocean Monitoring and 
Forecasting Systems

OOPC Ocean Observations Physics and Climate

OOPS Object-Oriented Prediction System

OpenFOAM Open source Field Operation  
and Manipulation

VANNEX 2: ACRONYMS



OS-Eval Observing System Evaluation

OSCAR Oil Spill Contingency and Response

OSE Observing System Experiment

OSI SAF Ocean and Sea Ice Satellite  
Applications Facility

OSPO Office	of	Satellite	and	Product	Operations

OSR Ocean State Report

OSSE Observing System Simulation Experiment

PAR Photosynthetically Available Radiation

PDAF Parallel Data Assimilation Framework

PDF Probability density function

PFT Phytoplankton Functional Type

PICO Panel for Integrated Coastal Observations

PISCES Pelagic Interactions Scheme for Carbon and 
Ecosystem Studies

PMOST Parallel Model Of Surge from Typhoon

PNA Pacific-North	American	Pattern

PO.DAAC Physical Oceanography Distributed Active 
Archive Centre

POC Particulate Organic Carbon

POM Princeton Ocean Model

PQ Product Quality

PSMSL Permanent Service for Mean Sea Level

PSS Practical Salinity Scale

QBO Quasi-Biennial Oscillation

QC Quality Control

QUID Quality Information Document

R/COFS Regional/Coastal Ocean Forecasting Systems

R2O Research to Operations

RADS Radar Altimeter Database System

RANS Reynolds-Averaged Navier–Stokes

RCP Representative Concentration Pathways

RFMOs Regional Fisheries Management 
Organisations

RHS Right Hand Side

RIOPS Regional Ice Ocean Prediction System

RMSD Root Mean Square Difference

ROC Receiver Operator Characteristic

ROMS Regional Ocean Modeling System

ROSE-L Copernicus Radar Observation System for 
Europe in L-band

RRR Rolling Review of Requirements

Rrs Remote	Sensing	Reflectance

SAMOA System of Meteorological and Oceanographic 
Support for Port Authorities

SANGOMA Stochastic Assimilation for the Next 
Generation Ocean Model Applications

SANIFS Southern Adriatic - Northern Ionian 
Forecasting System

SARAL Satellite with ARgos and ALtika

SAR Synthetic Aperture Radar

SCDA Strongly Coupled Data Assimilation

SCHISM Semi-implicit Cross-scale Hydroscience 
Integrated System Model

SCOBI Swedish Coastal and Ocean  
Biogeochemical Model

SCVTs Spherical Centroidal Voronoi Tessellations

SD Standard Deviation

SDGs Sustainable Development Goals

SEEK Singular	Evolutive	Extended	Kalman	filter

SHYFEM Shallow	water	HYdrodynamic	Finite	 
Element Model

SI Scatter Index

SI International System of Units

SIDFEx Sea Ice Drift Forecast Experiment

SIS Sea Ice Simulator

SIT System Information Table

SKEB Stochastic Kinetic Energy Backscatter

SLA Sea Level Anomaly

SLOSH Sea,	Lake,	and	Overland	Surges	from	
Hurricanes

SMAP Soil Moisture Active Passive

SMMR Scanning Multi-channel Microwave 
Radiometer

SMOS Soil Moisture and Ocean Salinity mission

SOCAT Surface	Ocean	CO₂	Atlas

SOCIB Balearic Islands Coastal Observing and 
Forecasting System

SONEL Système	d’Observation	du	Niveau	des	 
Eaux Littorales

SOOP Ship-of-opportunity

SPM Suspended Particulate Matter

SPOT Satellite	pour	l'Observation	de	la	Terre

SPP Stochastic Perturbed Parameters

SPPT Stochastic Perturbed Parametrized 
Tendencies

SPUF Stochastic Parameterization of  
Unresolved Fluctuations

SSES Sensor	Specific	Error	Statistics

SSH Sea Surface Height

SSM/I Special Sensor Microwave Imager

SSS Sea surface salinity

SST Sea surface temperature
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STAC Science and Technological  
Advisory Committee

SURF Structured and Unstructured Relocatable 
Ocean Model for Forecasting

SWAN Simulating WAves Nearshore

SWASH Simulating WAves till SHore model

SWE Shallow Water Equations

SWH, or Hs Significant	Wave	Height

SWOT Surface Water and Ocean Topography

TAC Thematic Assembly Center

TGTT Tide Gauge Task Team

TSG Thermosalinographs

TVD Total Variation Diminishing

UHSLC University of Hawaii Sea Level Centre

UKMO UK	Met	Office

UN United Nations

UNCTAD United Nations Conference on Trade  
and Development

UNDP United Nations Development Programme

UNFCCC United Nations Framework Convention on 
Climate Change

UNGA United Nations General Assembly

UOM Unified	Ocean	system	Model

US United States

USA United States of America

USSR Union of Soviet Socialist Republics

VARANS Volume-Averaged Reynolds Averaged 
Navier–Stokes

VIIRS Visible Infrared Imaging Radiometer Suite

VISIR DiscoVerIng Safe and effIcient Routes

VOF Volume-O-Fluid

VP Viscous-plastic

WAM Wave prediction Model

WAVERYS Global Ocean Waves Reanalysis

WCDA weakly coupled data assimilation

WCOFS West Coast Operational Forecasting System

WMO World Meteorological Organization

WMO/LC-WFV World Meteorological Organisation Lead 
Centre	for	Wave	Forecast	Verification

WOA World Ocean Atlas

WOD World Ocean Database

WRF Weather Research and Forecasting Model

XBT Expendable bathythermograph
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This guide hopes to be a guideline and inspiration to professionals 
all around the globe, stimulating the reader to research deeper 
knowledge on this vast field. If this objective is achieved, this 
publication is expected to foster the generation of valuable 
information that will be used in decision making processes and, 
therefore, to advocate a wiser and more sustainable relation with 
our always generous ocean.
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