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5.1.  
General introduction to circulation models
5.1.1. Objective, applications and beneficiaries

The main objective of any OOFS is to provide users with the best 
reliable and easy access information available on the state of 
the	ocean	in	near	real-time.	The	service	is	meant	for	any	user,	
and especially downstream service providers who use the infor-
mation as an input to their own value-added services.

A	forecasting	system	relies	on	a	numerical	ocean	model	and,	
in	many	cases,	on	a	data	assimilation	component	able	to	as-
similate the available observations and provide a complete 
dataset that can be used as initial conditions by the ocean 
circulation model. The availability of relevant observations 
is crucial to the success of an OOFS and the development of 
models	and	numerical	 techniques,	along	with	data	assimi-
lation schemes that combine all the information taking into 
account the uncertainties of the observations and models. 

The circulation modelling component represents one of the 
main cores of operational marine monitoring and forecasting 
systems: it provides an overall description of ocean physical 
essential	 variables	 (i.e.	 temperature,	 salinity,	 currents,	 sea	
surface	height,	etc.)	for	ocean	predictions	and	for	supporting	
climate studies. Ocean models are able to describe the sea 
state from global to coastal scales and to predict its variabil-
ity and evolution in time (from short to mid-term to long-
term).	 This	 is	 done	 by	 numerically	 solving	 a	 set	 of	 partial	
differential	equations,	based	on	an	approximated	version	of	
the Navier-Stokes equations.

At	the	beginning	of	the	XX	century,	Bjerknes	(1914)	described	
a practical method that could solve the mathematical dynam-
ic	and	thermodynamic	equations	at	least	for	a	finite	amount	
of	time.	He	defined	two	factors	that	were	necessary	to	make	
predictions	a	reality:	(1)	knowledge	of	the	initial	conditions	as	
accurately	as	possible,	and	 (2)	 the	development	of	an	accu-
rate predictive model. The latter consisted of discretizing the 
equations and using numerical methods to solve for the time 
derivative.	Based	on	this	approach,	the	first	successful	meteo-
rological	forecast	became	operational	at	the	end	of	the	1960s,	
while ocean forecasting began in the 1980s; a joint venture be-
tween Harvard University and the Naval Postgraduate School 
in	 Monterey,	 both	 in	 the	 United	 States,	 completed	 the	 first	
successful forecast of ocean mesoscales in a limited ocean 
area	(see	Pinardi	et	al.,	2017,	for	an	overview	of	the	ocean	pre-
diction	science).	Earlier	examples	of	wave	forecasting	during	
the second World War responded to the need to know the sea 
state	during	landing	operations	(O'Brien	and	Johnson,	1947).

During	the	last	decades	of	the	20th	century	and	the	first	de-
cades	of	the	21st	century,	ocean	forecasting	has	become	an	

operational	activity	and,	thanks	to	the	increase	of	computing	
power,	 today	we	are	able	to	numerically	 integrate	the	gov-
erning	equations	at	very	high	resolution	in	space	and	time,	
to	study	multi-scale	ocean	processes,	physical	properties	
and	their	impacts	on	the	climate,	and	human	activities	af-
fecting	the	environment.	In	modern	ocean	prediction,	sto-
chastic approaches and ensemble estimates complement 
deterministic	solutions,	accounting	for	the	different	sources	
of	uncertainties	 (e.g.	 errors	 in	 the	 initial	 conditions,	 in	 the	
forcing	functions,	in	the	physics	of	the	numerical	model,	and	
in	the	bathymetry)	that	unavoidably	affects	the	final	solution	
and tends to increase over the forecast period. 

To	 improve	the	quality	of	predictions,	data	assimilation	and	
ensemble	techniques	are	widely	used,	and	their	primary	scope	
is to rigorously and systematically combine available observa-
tions	 (in	 situ	and	satellite)	with	numerical	ocean	models	 to	
provide	the	best	estimate	of	the	forecasting	cycle.	However,	in	
case of very high-resolution nested models and when obser-
vation	availability	is	limited,	operational	systems	do	not	use	a	
data	assimilation	procedure.	When	possible,	an	OOFS	system	
needs to retrieve data observations from a wide variety of ob-
serving platforms and systems over the domain of interest for 
prediction. Satellite based observing systems provide a large 
source of observational data for an OOFS as well.

An OOFS needs to access information from a numerical 
weather prediction system in order to provide surface bound-
ary forcing information. The OOFS will also require informa-
tion	on	other	parameters	 that	 influence	the	ocean	such	as	
river	outflows,	etc.	Depending	on	the	domain	of	interest,	the	
OOFS may also require information about sea ice (see Section 
4.2 for the input data and Chapter 6 for understanding sea 
ice	modelling	basics).	Observations	are	also	used	to	provide	
a quantitative understanding of the capacity of the ocean 
model to make predictions by means of validation and cali-
bration	techniques	and,	consequently,	to	measure	and	mon-
itor	the	accuracy	of	the	forecasting	product	(see	Section	4.5).	
Routine	validation	and	verification	information	will	tell	the	
OOFS operators when a model is not performing well. The 
errors	 identified	through	validation	and	verification	can	be	
used to set priorities for further development of the OOFS. 
Despite the enormous improvements reached nowadays 
by operational forecasting systems ranging from global to 
coastal	scales,	much	research	 is	still	needed	to	advance	 in	
ocean prediction. Developments include access to additional 
innovative autonomous multi-scale observing technologies 
observations,	both	remote	and	in	situ	(Le	Traon	et	al.,	2019),	
to	new	model	developments	(Fox-Kemper	et	al.,	2019),	up	to	
next-generation computational methods and data assimila-
tion schemes supported by the recently expanding applica-
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tions	of	machine	learning	techniques	in	this	field	(De	Mey-
Frémaux	et	al.,	2019).

The ultimate purpose for operating an OOFS is the produc-
tion,	preparation,	and	delivery	of	operational	ocean	forecasts	
to users in forms that meet their needs. There is a growing 
list of users relying on the products and services from op-
erational ocean forecasting systems. Ocean predictions will 
continue to produce an increasing number of marine ap-
plications	and	services:	e.g.	 for	maritime	safety,	marine	re-
sources,	coastal	and	marine	environment	(Chapter 11).	This	is	
because the new systems allow informed management and 
emergency decisions to be made based on physical knowl-
edge	resolved	at	unprecedented	space	and	time	resolution,	
with known quality and accuracy. 

The emergence of operational organisations for delivering 
real-time forecasts and analyses will encourage the develop-
ment	of	value-added	products,	including	forecasts	for	extreme	
weather	driven	events	(such	as	storm	surges),	pollution,	oil	
spills,	acoustic	properties	(e.g.	the	speed	of	sound),	sea	ice,	
ecosystem	 management,	 safe	 offshore	 activities,	 search	
and	 rescue	 operations,	 optimal	 energy	 extraction,	 and	
maritime	safety	and	transport.	In	addition,	ocean	forecast	
products and services can also be providers of informa-
tion	for	aquaculture,	fishery	research,	and	regional	fishery	
organisations,	contributing	to	 the	protection	and	sustain-
able management of living marine resources. Availability 
of predictions on the ocean helps to limit damages in the 
case	of	floods,	storm	surges,	heat	waves	and	other	dangers	
associated	with	sea	conditions.	Furthermore,	detailed	and	
accurate forecasts are also useful to assist decision making 
to plan long-term strategies aiming at managing the risks as-
sociated with the impacts of climate change on the sea and 
coasts,	such	as	sea	level	rise	and	marine	heat	waves.

A predicted ocean where society has the capacity to un-
derstand current and future ocean conditions is one of the 
proposed seven outcomes of the United Nations Decade of 
Ocean Sciences for Sustainable Development.

Scope of this chapter is to present all elements that make an 
OOFS and provides a detailed understanding of the main cir-
culation	modelling	components.	For	each	component,	a	com-
prehensive description is provided in dedicated chapter sub-
sections,	including	the	presentation	of	some	state-of-the-art	
examples of ocean models currently working in operational 
frameworks.	 In	addition,	basic	concepts	of	data	assimilation	
systems	and	validation	strategies	will	be	presented	as	well,	
since an essential part of operating a model is to conduct the 
necessary	validation	and	verification	procedures	to	maintain	a	
continuous quality control of the system outputs.

5.1.2. Circulation Physics

The	 physical	 processes,	 properties	 and	 circulation	 of	 the	
ocean are described numerically by the approximated Navi-
er-Stokes	equations	(details	in	Section	5.4.1).	The	equations	
allow the spatial and temporal distribution of the tempera-
ture,	salinity,	density,	pressure,	and	currents	to	be	described.	
Numerical ocean models are the building block of opera-
tional oceanography and fundamental for near real time to 
seasonal to decadal forecasts and climate projections. In 
operational	oceanography,	they	are	used	alongside	data	as-
similation techniques to accurately represent the state of the 
ocean	at	a	particular	point	in	time	and	space,	and	to	produce	
the initial condition of the forecasting system.

The	governing	equations	for	a	real	fluid	are	the	Navier-Stokes	
equations,	together	with	conservation	of	salt	and	heat	and	
an equation of state; these equations support fast acoustic 
modes and involve nonlinearities in many terms that make 
their	 solution	both	difficult	 and	expensive.	A	 series	of	 ap-
proximations are made to simplify and yield the “primitive 
equations”,	which	are	the	basis	of	most	general	circulation	
models. The assumptions that are made in ocean models are 
described in Section 5.4.

Ocean circulation models aim to represent key processes. These 
include:	1)	transport	of	heat	by	the	ocean;	2)	the	effect	of	evap-
oration,	precipitation	and	runoff	on	ocean	salinity	and	density;	
and	3)	the	role	of	ocean	currents	which,	along	with	wind	waves	
and	tides,	drive	ocean	mixing	and	water	mass	transformation.	
Ocean circulation models discretize the governing equations on 
a	horizontal	and	vertical	grid	(Section	5.4	expands	on	this).	The	
details of whether processes can be explicitly resolved in mod-
els or they must be parameterised depend on the resolution of 
the grid used to solve the approximate numerical system.

Figure 3.4 (see Chapter 3)	 shows	 the	 order	 of	magnitude	 of	
spatial	and	temporal	scales	of	specific	ocean	processes.	If	the	
model	resolves	scales	of	100	km,	ocean	models	should	be	able	
to	resolve	Kelvin	and	Rossby	waves;	 indeed,	the	representa-
tion of Equatorial dynamics has been shown to be important 
for forecasting the evolution of El Nino on seasonal timescales 
(Latif	et	al.,	1994).	On	shorter	timescales	but	with	similar	spa-
tial	scales,	surface	tides	are	key	processes	to	represent.	Mov-
ing	to	spatial	scales	of	~10	km	to	100	km,	the	ocean	mesoscale	
can start to be represented; this scale includes boundary cur-
rents	and	mesoscale	eddies	(Hewitt	et	al.,	2020).	At	even	finer	
scales,	 coastal	 upwelling,	 internal	 tides,	 and	 internal	 waves	
can be represented. Interactions with bathymetry can be im-
portant	 at	 the	 scale	 of	 the	 bathymetry.	 For	 example,	 choke	
points can determine the exchange between the deep ocean 
and	inland	seas,	such	as	the	Gibraltar	Strait.	Horizontal	reso-
lution choices are discussed further in Section 5.4.
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While a primary consideration is the horizontal scales (Figure 
3.4),	the	choice	of	vertical	resolution	and	coordinate	is	also	
an important consideration. These choices are discussed fur-
ther	 in	Section	5.4,	along	with	 the	numerical	methods	that	
are employed to solve the equations and some of the param-
eterisation choices to be made.

The ocean has strong links to other aspects of the Earth sys-
tem,	such	as	sea	ice,	which	is	particularly	important	for	modu-
lating temperature and salinity at high latitudes. Global ocean 
models include a sea ice component. State-of-the-art sea ice 
models represent the ice thermodynamics including melt-
ponds	and	the	ice	dynamics,	with	a	representation	of	the	ice	
rheology. Many sea ice models also capture the variations in 
ice thickness or ice age within a typical ocean grid box. Current 
status of sea ice modelling and the applicability of models for 
operational	forecasting	is	discussed	in	Hunke	et	al.	(2020).	

This chapter provides complementary information on the 
way	to	set	an	OOFS,	which	core	is	the	circulation	model.	Sec-
tion 5.3 will provide a list of input data needed for setting up 
an	ocean	model,	from	static	datasets	such	the	bathymetry	
to	operational	products	such	atmospheric	forcing,	to	other	
OOFS for the provisioning of initial/boundary conditions in 
case	of	regional/coastal	models,	 to	observations	used	for	
assimilation and validation. Section 5.4 focuses on the math-
ematical	formulation	of	the	primitive	equations,	providing	
some basic information to numerical methods for discreti-
zation and numerical integration of such equations. Section 
5.5 is devoted to presenting the basic mathematics for the 
data assimilation schemes commonly used in global and 
regional OOFS. Section 5.6 deals with ensemble modelling 
and,	finally,	Sections	5.7	and	5.8	provide	major	details	on	the	
validation approaches and the OOFS output. The last part of 
this	chapter	provides	an	inventory	of	OOFS,	including	multi-
year	systems,	operating	at	international	level,	from	global	to	
coastal scale.

5.2.  
Circulation forecast and multi-year systems

mentum	instead,	we	express	the	kinematic	boundary	
condition.	Additionally,	the	ocean	exchanges	momen-
tum with the Earth through friction; this needs to be pa-
rameterized	 in	 terms	of	 turbulent	fluxes	using	bottom	
and lateral boundary conditions.

These connections will be detailed along this chapter and 
represent the core of the OOFS architecture introduced in the 
next subsection.

5.2.2. Architecture singularities

An	OOFS	 that	would	provide	 the	prediction,	 as	well	 as	 the	
past	reconstruction	of	the	past	state	of	the	ocean,	is	based	
on several components that are strongly linked. A general in-
troduction to OOFS architecture singularities is provided in 
Chapter 4,	which	includes	for	each	system	component,	input	
and	output	data,	as	well	as	links	between	some	of	the	com-
ponents,	 are	 described.	 Complexity	 of	 the	 system,	 compo-
nents	of	the	system,	infrastructure,	maintenance	of	the	code,	
and	monitoring	of	the	whole	data	flow	should	be	defined	de-
pending	on	needs,	robustness	and	operationality.	Of	course,	
the	cost	of	the	development,	maintenance	and	evolution	of	
the system depends on operational constraints. 

5.2.1. Ocean-Earth system as basis for OOFS

The ocean is a system that interacts with other systems. Fig-
ure	5.1	shows	a	simplified	representation	of	the	Earth	system	
interaction in weather and ocean forecasting. Focusing on 
the	ocean,	we	can	identify	(Madec	et	al.,	2022):

• Connection with land: in particular with rivers and 
lakes	which	exchange	freshwater	flux	with	the	ocean;

• Connection with the atmosphere: the ocean receives 
precipitation and returns evaporation. The atmosphere 
and the ocean also exchange horizontal momentum 
(wind	stress)	and	heat;

• Connection with sea ice:	the	ocean	exchanges	heat,	
salt,	 freshwater	and	momentum	with	sea	 ice.	 The	sea	
surface temperature is constrained to be at the freezing 
point of the interface. Sea ice salinity is very low (~4-6 
PSU)	compared	to	that	of	the	ocean	(~34	PSU).	The	cycle	
of freezing/melting is associated with freshwater and 
salt	fluxes	and	cannot	be	neglected;

• Connection with solid earth: heat and salt fluxes 
through	the	seafloor	are	small,	hence	no	flux	of	heat	
and salt is considered across solid boundaries. For mo-
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Figure 5.1.  Representation of the ocean processes and connections with the Earth.

Elements needed to run a circulation model for operational 
forecasting:

• Observations. These are used for: 

• Validation	(including	forecast	verification)	and	cali-
bration,	further	described	in	Section	5.7;	
• Data	assimilation,	which	basic	concepts	are	intro-
duced in Section 5.5;

Sources of observations are:

• In-situ observations for the following variables: tem-
perature,	salinity,	sea	surface	height,	and	sea	surface	
currents. See Section 4.2.2. for more information on 
in-situ ocean observations;
• Satellite observations for the following list of vari-
ables:	sea	level	anomaly,	sea	surface	temperature,	and	
sea	ice	concentration.	Recently,	other	parameters	such	
as sea surface salinity and sea ice thickness have been 
remotely measured. See Section 4.2.2. for more informa-
tion on in-situ ocean observations.

• Bathymetry. It is an indispensable topographical infor-
mation for an Ocean Circulation Forecasting System. Its 
resolution	may	significantly	drive	the	modeller	during	the	

setup	of	the	circulation	model	to	address	specific	scales	
and	resolution.	For	example,	in	coastal	models	we	may	
need	bathymetric	datasets,	whose	resolution	can	be	even	
lower	than	100	m,	to	properly	represent	the	physical	struc-
tural	peculiarities	of	both	coastline	and	shelf	area,	allow-
ing the representation of small-scale physics. See more 
information on bathymetric data sets in Section 4.2.4.

• Atmospheric forcing.	Generated	by	NWP	services,	it	is	
vital	to	provide	momentum,	heat,	and	freshwater	fluxes	to	
the OOFS. More info on atmospheric forcing can be found 
in Section 4.2.5.

• Land forcing.	Provides	freshwater	fluxes	from	rivers.	
More details on this data source are in Section 4.2.6. 

• Initial and boundary conditions from other OOFS. 
3D	fields	from	parent	models	are	required	when	down-
scaling to obtain higher resolutions (see Sections 4.2.7. 
and	5.4.4.	for	more	information).	

• Climatological fields. These serve as complement to the 
other data sources or might be used to substitute the pre-
vious if no other data are available. See Section 4.2.8 for 
more information on climatologies.

5.3.  
Input data
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5.4.  
Modelling component: general circulation models
An ocean model is a numerical and computational tool used 
to	understand	and	predict	ocean	variables	(Griffies,	2006),	
providing	a	discrete	solution	of	the	geophysical	fluid	dynamic	
equations. It represents a rigorous way of linking the ocean 
state parameters through mathematical equations represent-
ing the physics that governs the oceans. 

In	the	next	subsections,	we	will	introduce	the	different	com-
ponents	of	an	OGCM,	that	is	part	of	the	OOFS	(steps	1	and	2	
as	in	Figure	4.1),	focusing	on	mathematical	equations,	numer-
ical	methods,	and	spatial	discretization	techniques.	A	list	of	
available numerical ocean models is provided in Table 5.1 in 
Section 5.4.3. Data assimilation methods used in OOFSs are 
instead presented in Section 5.5.

5.4.1. Mathematical model

The Navier-Stokes equations represent the fundamental laws 
of	fluid	dynamics;	they	are	based	on	conservation	of	momen-
tum,	conservation	of	mass,	and	an	equation	of	state.	

Oceans are also represented by the following equations (al-
though	with	some	significant	simplifications	as	explained	in	
Madec	et	al.,	2022):

• Spherical Earth approximation: the geopotential sur-
faces are assumed to be oblate spheroids that follow 
the	Earth’s	bulge,	and	are	approximated	by	spheres	
which gravity is locally vertical (parallel to the Earth’s 
radius)	and	independent	from	latitude;

• Thin-shell approximation: the ocean depth is neglect-
ed compared to the Earth’s radius;

• Turbulent closure hypothesis:	the	turbulent	fluxes	-	
which represent the effect of small-scale processes on the 
large scale - are expressed in terms of large scale features;

• Boussinesq hypothesis: density variations are ne-
glected,	except	in	their	contribution	to	buoyancy	force:

(5.1)

• Hydrostatic hypothesis: the vertical momentum equa-
tion is reduced to a balance between the vertical pressure 
gradient and the buoyancy force (this removes convective 
processes from the initial Navier-Stokes equations and so 
convective	processes	must	be	parameterized	instead):

(5.2)

• Incompressibility hypothesis: the 3D divergence of 
the velocity vector U is assumed to be zero:

(5.3)

• Neglect of additional Coriolis terms: the Coriolis terms 
that vary with the cosine of latitude are neglected.

Because the gravitational force dominates in the equations 
of	large-scale	motions,	it	is	useful	to	choose	an	orthogonal	
set of unit vectors (i,j,k)	linked	to	the	Earth	such	that	k	is	the	
local upward vector and (i,j)	are	2	vectors	orthogonal	to	k. Let 
us	define	additionally:	U	the	vector	velocity,	T the potential 
temperature,	S	the	salinity,	ρ the insitu density. The vector 
invariant form of the primitive equations in the (i,j,k)	vector	
system provides the following equations:

• The momentum balance:

(5.4)

• The heat and salt conservation equations:

(5.5)

(5.6)

where ∇ is the generalised derivative vector operator in (i,-
j,k)		directions,	t	is	the	time,	z	is	the	vertical	coordinate,	ρ is 
the	in-situ	density	given	by	Eq.	5.1,	ρ0	is	the	reference	density,	
p	is		the	pressure,	f=2Ω ∙k is the Coriolis acceleration (where 
Ω	is	the	Earth’s	angular	velocity	vector)	and	g is the gravita-
tional acceleration. DU,	DT and DS are the parameterizations 
of	small-scale	physics	for	momentum,	temperature	and	sa-
linity,	while	FU,	FT and FS are surface forcing terms.

OGCMs are able to resolve the mesoscale in some regions but 
not	in	others;	additionally,	once	applied	for	climate	research,	
they cannot entirely reproduce the rich mesoscale eddy ac-
tivity	we	observe	in	reality.	For	this	reason,	mixing	associated	
with sub-grid scale turbulence needs to be parameterized. 

CHAPTER 5. CIRCULATION MODELLING 84



A common problem an ocean modeller is facing when he/
she deals with primitive equations is the numerical discret-
ization	 in	 space	 and	 time.	 As	 described	 in	Hallberg	 (2013),	
numerical ocean models need to represent the effects of me-
soscale	eddies,	which	are	the	typical	horizontal	scales	of	less	
than 100 km and timescales in the order of a month. When 
defining	the	spatial	grid	for	the	numerical	integration	of	the	
primitive	equations,	it	is	important	to	account	for	the	ratio	of	
a	model’s	grid	spacing	to	the	deformation	radius,	defined	as:

 
(5.7) 

where cg	 is	 the	first-mode	 internal	gravity	wave	speed,	f is 
again	the	Coriolis	parameter,	and	β is its meridional gradient 
(Chelton	et	al.,	1998).

Figure 5.2 shows the ocean model resolution required for the 
baroclinic	deformation	radius	 to	be	twice	 the	grid	spacing,	
based on an eddy-permitting ocean model after one year of 
spin-up	from	climatology	(Hallberg,	2013).

5.4.2. Basic discretization techniques

The next step towards the setup of a numerical model is the 
discretization	 phase,	 which	 involves	 the	 spatial	 discretiza-
tion and the equation discretization.

The	spatial	discretization	consists	in	defining	a	grid	or	mesh	
that	would	represent	the	space	continuum	with	a	finite	num-
ber of points where the numerical values of the physical vari-
ables	must	be	determined.	In	Section	5.4.2.1-2,	basic	concepts	
for dealing with horizontal grids and vertical discretization 
will	be	introduced.	Once	the	mesh	is	defined,	we	move	to	the	
final	 step	 related	 to	 the	 primitive	 equations	 discretization	
by	using	numerical	methods,	which	consist	in	transforming	
the	 mathematical	 model	 into	 an	 algebraic,	 nonlinear	 sys-
tem of equations for the mesh-related unknown quantities. 
The concepts on the basis of the time stepping are treated 
in	Section	5.4.2.3.	With	the	definition	of	the	time-dependent	
numerical	 formulation,	 we	 finally	 select	 the	 discretization	
method	to	use	for	the	equations,	described	in	Section	5.4.2.4.

Figure 5.2. 	 The	horizontal	resolution	needed	to	resolve	the	first	baroclinic	deformation	radius	with	two	
grid	points,	based	on	a	1/8º	model	on	a	Mercator	grid	on	Jan	1	after	one	year	of	spinup	from	climatology	(from	
Hallberg,	2013).
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5.4.2.1. Horizontal grids

In	numerical	methods,	we	can	use:

• Structured grids
• Unstructured grids

A mesh is structured when the grid cells have the same num-
ber of sides and the same number of neighbouring cells. 
Typically,	in	ocean	models	three	kinds	of	grids	may	be	used	
(Figure	5.3):	the	Arakawa-A	grid,	the	Arakawa-B	grid	and	the	
Arakawa	C-grid.	In	the	Arakawa-A	grid	(Figure	5.3A),	all	vari-
ables	are	evaluated	at	the	same	location.	Then,	the	B	and	C	
grids	have	been	developed	respectively	for	coarse	and	fine	
resolution	models.	In	the	Arakawa-B	grid	(Figure	5.3B)	both	u	
(Northwards	current	component,	in	orange)	and	v	(Eastwards	
current	component,	in	green),	for	example,	are	evaluated	at	
the same point and the velocity points are situated at the 
point that is equidistant from the four nearest elevation 
points	(Elevation,	in	blue).	In	the	Arakawa-C	grid	(Figure	5.3C),	
the	u	points	lie	east	and	west	of	elevation	points,	while	the	
vpoints lie north and south of the elevation points .

Unstructured	grids	(Figure	5.4C)	allow	one	to	tile	a	domain	
using more general geometrical shapes (most commonly tri-
angles)	that	are	pieced	together	to	optimally	fit	details	of	the	
geometry.	They	are	extremely	attractive	for	ocean	modelling,	
especially	for	coastal	models,	in	which	the	high-quality	rep-
resentation of geometrical features of a given domain is es-
sential,	and	from	the	numerical	point	of	view	they	may	reach	
a	significant	level	of	complexity	(Griffies	et	al.,	2000).

Besides	their	ability	to	better	represent	coastlines,	unstruc-
tured grid approaches also offer the possibility to smoothly 
increase the resolution over a region of interest or depend-
ing	on	physical	parameters	(Sein	et	al.,	2017).	This	is	also	pos-
sible	with	structured	curvilinear	grids	(for	example,	see	the	
BLUElink Australian prediction model grid in Brassington et 
al.,	2005,	and	Figure	5.4A),	though	with	likely	more	constraints	
on	the	grid	deformation	properties.	However,	 in	any	of	the	
two	cases,	numerical	stability	is	dictated	by	the	smallest	grid	
element,	which	substantially	increases	the	computational	
problem.	An	additional	difficulty	is	that	sub-grid	parameter-
izations	have	to	be	valid	throughout	the	domain,	whatever	
the	grid	size	and	eddy	resolution	regime	are	(Hallberg,	2013).	
In	the	structured	grid	case,	block	structured	refinement	tech-
niques enable to circumvent some of the aforementioned 
difficulties	by	allowing	a	stepwise	change	(over	a	given	grid	
patch)	of	the	space	and	time	resolutions	(by	integer	factors,	
Figure	5.5B).	Parameterizations	and	numerical	schemes	can	
also be changed accordingly. Grid exchanges can either be 
“one-way”	if	finer	grids	only	receive	information	at	their	dy-
namical	boundaries	from	the	outer	grid,	or	“two-way”	if	they	
also feed information back to the underlying mesh. In the 
latter	case,	data	transferred	at	each	model	time	step	allows	
for a nearly seamless transition at the interface and possi-
bly guarantees perfect conservation of prognostic quantities 
(Debreu	et	al.,	2012).

Several libraries do facilitate the implementation of block struc-
tured	refinement.	Among	them,	the	AGRIF	library	(Debreu	et	al.,	
2008)	has	been	successfully	used	in	HYCOM,	MARS,	NEMO	and	
ROMS	models.	It	is	noteworthy	that	refinement	techniques	can	
eventually	be	adaptive,	hence	refinement	regions	can	move	

Figure 5.3. 	 The	three	Arakawa	types	of	grids	(adapted	from	Dyke,	2016).

Northwards current
Eastwards current
Elevation

Legend:

A) Arakawa A grid B) Arakawa B grid C) Arakawa C grid
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over	the	course	of	the	model	integration	(Blayo	and	Debreu,	
1999).	Resolution	is	in	that	case	increased	only	where	need-
ed,	depending	on	a	local	numerical	or	physical	criterion,	to	
save computing resources. The use of AMR techniques in re-
alistic ocean models is nevertheless still poorly documented.

5.4.2.2. Vertical discretization

The problem of vertical discretization is connected to phys-
ical processes that the modeler wants to resolve and it 
must	address	questions	related	to:	a)	the	representation	
of	pressure	gradients;	b)	 the	 representation	of	 sub-grid	
scale	processes;	c)	the	need	to	concentrate	the	resolution	
in	a	specific	region	(e.g.	the	shelf,	the	coastal	areas,	etc.);	
and	d)	 the	 comparison	with	observations.	Griffies	 et	 al.	
(2000)	distinguished	among	three	traditional	approaches	
(Figure	5.5):

• Depth/geopotential vertical coordinates;
• Terrain-following;
• Potential	density	(isopycnic)	vertical	coordinates.

Geopotential	(z-)	coordinates	(Figure	5.5A)	have	been	large-
ly used in ocean and atmospheric models because of their 
simplicity and straightforward nature for parameterizing 
the	surface	boundary	layer.	On	the	contrary,	they	are	not	able	
to adequately represent the effect of topography on the 
large-scale ocean models. Terrain-following coordinate sys-
tems	(Figure	5.5B)	are	used	especially	in	coastal	applications,	
where bottom boundary layers and topography need to be 
well	resolved.	As	z-coordinates,	they	suffer	from	spurious	di-

apycnal mixing due to problems with numerical advection. 
In	isopycnic	vertical	coordinates	(Figure	5.5C),	the	potential	
density is referred to a given pressure. This system basically 
divides	the	water	column	into	distinct	homogeneous	layers,	
which thicknesses can vary from place to place and from one 
time step to the next. This choice of coordinate works well for 
modelling	tracer	transport,	which	tends	to	be	along	surfaces	
of constant density. While both layered and isopycnal mod-
els	use	density	as	 the	vertical	 coordinate,	 there	are	subtle	
differences	between	the	two	types.	Griffies	et.	al.	(2000)	and	
Chassignet	et	al.	(2006),	provide	a	discussion	on	the	advan-
tages and disadvantages of each vertical coordinate system.

5.4.2.3. Time stepping

Once the model is set from the spatial point of view and 
discretization	in	horizontal	and	vertical	is	defined,	the	time	
step for the computation needs to be considered as well. In 
the numerical schemes used to integrate the primitive equa-
tions,	the	time	step	must	be	small	enough	to	guarantee	com-
putational stability. The Courant-Friedrichs-Lewy criterion 
(CFL)	is	the	stability	condition	that	states	that	the	velocity	
c at which the information is propagating at times the time 
step	∆t	must	be	less	than	the	horizontal	grid	spacing	∆x: 

(5.8)

where C is the Courant number and Cmax depends on the spe-
cific	used	scheme:	explicit	schemes	allow	to	advance	the	solu-
tion	to	the	next	time	level,	one	spatial	grid	point	at	a	time,	and	
are	quite	simple	to	implement	(Kantha	and	Clayson,	2000);	

Resolution level 0
Resolution level 1
Resolution level 2

Legend:

A) Swiss cross B) Block-structured C) Unstructured

Figure 5.4. 	 Possible	ways	to	get	a	local	increase	of	resolution:	a)	Progressive	deformation	of	a	structured	
grid;	b)	Block	structured	refinement;	and	c)	Stretching	of	unstructured	grid	cells	(adapted	from	Gerya,	2019).
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in	an	implicit	time-stepping	scheme,	the	solution	at	the	next	
time level must be derived for all grid points simultaneously. 
These	schemes	are	computationally	more	intensive,	but	are	
unconditionally	stable,	thus	permitting	larger	time	steps	to	be	
taken than would otherwise be required.

5.4.2.4. Numerical techniques 

Three families of methods are available for discretizing the 
space derivatives that enters in the primitive equations: 

• Finite	difference	Method	(FDM);
• Finite	Volume	Method	(FVM);
• Finite	Elements	Method	(FEM).

Here we provide an introduction to each method but for 
more	detailed	explanation	refer	to	Hirsch,	2007.

The FDM is based on the properties of the Taylor expansions: 
it corresponds to an estimation of a derivative by the ratio of 
two	differences	according	to	the	theoretical	definition	of	the	
derivative,	like	the	following:

(5.9)

If	we	remove	the	limit	in	Eq.	5.9,	we	obtain	a	finite	difference:	
additionally,	if	∆x	is	“small”	but	finite,	the	expression	on	the	
RHS of Eq. 5.9 is an approximation of the exact value of ux. 
Since	∆x	is	finite,	an	error	is	introduced,	called	truncation	
error,	which	goes	to	zero	for	∆x tending to zero. The power of 
∆x	with	which	this	error	tends	to	zero,	is	caller	order	of	accu-
racy of the difference approximation and can be obtained by 
a Taylor series of u(x+∆x)	around	point	x	(Eqq.	5.10	and	5.11):

 
 

(5.10)

(5.11)

Equation 5.11 shows that:

• The	RHS	of	Eq.	5.9	is	an	approximation	of	the	first	de-
rivative ux in the point x;
• The remaining terms in the RHS represent the error 
associated with this formula.

If	we	restrict	the	truncation	error	to	its	dominant	term,	that	
is	the	lower	power	of	∆x,	we	see	that	this	approximation	for	
u(x)	goes	to	zero	like	the	first	power	of	∆x and is said to be 
the	first	order	in	∆x:

(5.12)

where O(∆x)	is	the	truncation	error.

The FVM is a numerical technique by which the integral for-
mulation of the conservation laws is discretized directly in 
the	physical	space.	It	is	based	on	cell-averaged	values,	which	
makes this method totally different from FDM and FEM where 
the main numerical quantities are the local function values 
at	the	mesh	points.	For	each	cell,	a	local	finite	volume,	also	
called	control	volume,	is	associated	to	each	mesh	point	and	
applies the integral conservation law to this local volume. 
For	this	reason,	the	FVM	is	considered	a	conservative	meth-
od. The essential property of this formulation is the presence 
of the surface integral and the fact that the time variation of 
a generic variable u inside the volume only depends on the 
surface	values	of	the	fluxes.

A) B) C)

ρ1

ρ2

ρn-1

ρn

Figure 5.5. 	 Vertical	grid	types:	a)	depth/geopotential	vertical	coordinates;	b)	terrain-following;	and	c)	poten-
tial	density	(isopycnic)	vertical	coordinates.
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The FVM requires:

• The	subdivision	of	the	mesh,	obtained	from	the	space	
discretization,	into	finite	small	volumes,	one	control	vol-
ume being associated to each mesh point;
• The application of the integral conservation law to each 
of	these	finite	volumes.

The	FEM	originates	from	the	field	of	structural	analysis	and	it	
has two common points with the FVM:

• The space discretization is considered a set of volumes 
or	cells,	called	elements;

• It requires an integral formulation as a starting point 
that can be considered as a generalisation of the FVM.

The FEM requires:

• Discretization of the spatial domain into a set of ele-
ments of arbitrary shapes;
• In	each	element,	a	parametric	representation	of	the	
unknown	variables,	based	on	families	for	interpolating	
or	shape	functions,	associated	to	each	element	or	cell	
is	defined.

WebsiteNesting capabilitiesNumerical methodsGrid topologyModel

https://www.nemo-ocean.eu/ 

https://mitgcm.org/

https://www.croco-ocean.org/

https://sites.google.com/site/
shyfem/project-definition

https://fesom.de/

https://www.gfdl.noaa.gov/
ocean-model

http://ccrm.vims.edu/schism-
web/

https://mpas-dev.github.io/

https://www.hycom.org/ 

https://www.myroms.org/

http://fvcom.smast.umassd.
edu/
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SHYFEM
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FVCOM

Structured grid

Structured grid

Structured grid

Unstructured grid

Unstructured grid

Structured grid

Unstructured grid

Unstructured grid

Structured grid

Structured grid

Unstructured grid

Finite Difference

Finite Difference

Finite Difference

Finite Element

Finite Element

Finite Volume

Finite Element

Finite Element

Finite Volume

Finite Volume

Finite Volume

Yes,	with	AGRIF

Yes

Yes,	with	AGRIF

Yes,	with	AGRIF

Yes,	with	AGRIF

Yes,	with	AGRIF

Table 5.1. List of available ocean models used from global to coastal scales.
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Such	nice	properties	of	the	FEM	as	conservation	of	energy,	that	
is common for all variational methods of solving differential 
equations,	treatment	of	boundary	conditions,	and	flexibility	of	
irregular	meshes	have	made	them	quite	attractive,	since	they	
are	also	well	suited	to	parallel	computing.	For	this	reason,	it	
is considered as an interesting alternative to FDM commonly 
used	in	ocean	modelling	(Danilov	et	al.,	2004).

5.4.3. List of Ocean General Circulation Models

In	Table	5.1,	are	summarised	some	of	the	most	used	ocean	
models that integrate numerically the primitive equations 
for	a	wide	range	of	spatial	domains,	from	global	ocean	to	
coastal scales.

5.4.4. Downscaling large-scale solutions to 
regional/coastal circulation models

The need to resolve the small scales of ocean circulation in 
coastal	seas,	as	well	as	the	impracticability	to	run	models	at	suf-

ficiently	high	resolution	and	detailed	physics	at	global	scales,	
led to the development of downscaling approaches for both the 
direct modelling and the data assimilation problems.

Two families of modelling approaches can be distinguished: 
(1)	models	 running	at	global	scales	with	mesh	refinement	
in	the	coastal	areas	of	interest;	and	(2)	one-way	or	two-way	
nesting of coastal models into regional or global ones. In 
practice,	the	first	one	is	achieved	by	setting	variable-mesh	
grids,	such	as	unstructured	or	curvilinear	structured	grids	
(as	discussed	in	5.4.2.1).	To	our	knowledge,	only	2D	(i.e.	baro-
tropic)	unstructured	models	dedicated	to	storm	surges	and/
or	tides	modelling,	such	as	the	tidal	atlas	FES2014	(Lyard	et	
al.,	2021),	are	running	over	the	global	ocean	and	satisfy	the	
resolution requirements in shallow waters. In the second 
approach,	 the	 large-scale	global	 (or	 regional)	model,	 i.e.	
the	‘parent’	model,	provides	open-boundary	conditions	to	
the	coastal	(‘child’)	model;	in	case	of	two-way	nesting,	both	
models are coupled and the child model returns an estimate 
of	the	ocean	state	at	its	boundary,	which	is	used	in	turn	to	

Figure 5.6.  Spectral nudging in the Gulf of Maine; top: spatial domain; bottom:  snapshots of sea surface 
temperature	on	22	Jul	2012	from	observations,	global	system,	regional	configuration	and	regional	configuration	
with	spectral	nudging	(from	Katavouta	and	Thompson,	2016).
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force the parent simulation. General resolution issues for 
both approaches and practical considerations are discussed 
in	Greenberg	et	al.	(2007).

However,	 nesting	 methods	 do	 not	 just	 consist	 in	 repro-
ducing	the	large-scale	solution	with	more	details.	 Indeed,	
the child model may represent different processes from 
those	solved	by	the	parent	model	(e.g.	tides,	surface	gravity	
waves,	etc.)	or	may	rely	on	different	parameterizations	or	
parameters.	Besides,	due	to	the	strong	nonlinearity	of	the	
ocean	flow,	the	internal	variability	of	the	child	model	may	
decouple	from	that	of	the	parent,	leading	to	divergent	solu-
tions	(Katavouta	and	Thompson,	2016).	Figure	5.6	shows	an	
example of spectral nudging in the Gulf of Maine as in Kat-
avouta	and	Thompson	(2016).	The	spatial	domain	is	given	in	
Figure 5.6-top: the black box represents the bounding box 
of	the	regional	model	GoMSS	(NEMO,	1/36°	horizontal	reso-
lution),	which	is	nested	into	the	HYCOM+NCODA	global	1/12°	
analysis	system.	GoMSS+	is	the	regional	configuration	with	
spectral nudging where temperature and salinity variables 
are	directly	updated.	By	adopting	such	a	nesting	approach,	
the	regional	configuration	significantly	improves	the	qual-
ity of the solution as shown in Figure 5.6-bottom: it rep-
resents	the	sea	surface	temperature	snapshots	for	22	July	
2012	based	on	satellite	(“Obs”),	the	global	system	(“Global	
system”),	 the	 regional	 system	 (“GoMSS”),	 and	 that	 imple-
menting	 the	 spectral	 nudging	 (“GoMSS+”).	 The	 GoMSS+	
exhibits an improved version of the coastal sea surface 
temperature	 representation,	 which	 is	 typical	 for	 a	 higher	
resolution model that takes into account coastal processes 
(e.g.,	tides).	At	the	same	time,	it	is	able	to	capture	the	warm	
slope water and cold shelf waters as shown in the obser-
vations,	 which	 are	 well	 represented	 in	 the	 global	 model	
thanks	to	data	assimilation.	For	further	details,	please	refer	
to	Katavouta	and	Thompson	(2016).

In	 2007,	 the	 GODAE	 Coastal	 and	 Shelf	 seas	Working	 Group	
(De	Mey	et	al.,	2007)	noted	that:	“It	is	becoming	increasing-
ly clear that specifying the offshore boundary conditions of 
coastal models by using forecasts from a hydrodynamical 
large-scale	ocean	model	has	the	potential	(1)	to	provide	bet-
ter	local	estimates	by	adding	value	to	GODAE	products,	(2)	to	
extend	predictability	on	shelves,	and	(3)	to	enhance	the	rep-
resentativeness of local observations.” Despite considerable 
efforts since 2007 on both coastal modelling capabilities and 
nesting	methods,	downscaling	still	raises	obvious	numerical	
and physical issues. In the following paragraphs an attempt 
has	been	made,	but	not	exhaustively,	to	present	the	various	
difficulties	that	arise	and	the	solutions	found	in	the	litera-
ture to address them. 

The	coastal	ocean	is	subject	to	both	local	(e.g.	atmosphere,	
river	mouths)	and	remote	forcings	(e.g.	astronomical	poten-
tial,	coastal	waveguide,	wind	fetch,	biogeochemical	connec-
tivity).	Therefore,	the	boundaries	of	a	coastal	model,	which	

also	 intercept	 strong	 bathymetry	 gradients,	 play	 a	 critical	
role.	 In	 addition,	 solving	 primitive	 equations	 on	 a	 limited	
area domain with OBC does not lead to a unique physically 
realistic	solution.	Consequently,	a	variety	of	ad	hoc	methods	
to set-up practical OBC have been developed with a depen-
dence	upon	flow	dynamics,	model	resolution,	types	of	infor-
mation	at	 the	open	boundaries,	etc.,	 as	 reviewed	by	Blayo	
and	Debreu	(2005).	A	simple	view	of	the	OBC	issues	consists	
in viewing the problem because of inconsistencies between 
the	parent	and	child	models	which,	as	mentioned	previously,	
arise	due	to	different	physics	of	the	model,	to	different	forc-
ing	(e.g.	atmospheric,	runoff,	bathymetry),	and	to	truncated	
information at the open boundary. The last refers to the fact 
that	the	parent	information	is	provided	as	discrete	fields	in	
space	and	time	(e.g.	daily	or	hourly	averages);	high-frequen-
cy	motions	are	therefore	filtered	out	or	aliased.

The example of tides is particularly enlightening on these 
limitations.	 Even	 though	 the	 parent	 model	 resolves	 tides,	
forcing the child with the parent tidal waves (either baro-
tropic	or	both	barotropic	and	baroclinic)	 implies	 the	avail-
ability of the large-scale forcing at very high frequency (a few 
minutes).	In	practice,	especially	for	operational	systems,	this	
is	very	difficult	to	achieve	as	it	requires	huge	storage	capaci-
ties.	Therefore,	coastal	models	are	usually	forced	by	low-fre-
quency	dynamics	and	tidal	constituents,	both	of	which	not	
necessarily stemming from the same parent models (tidal 
constituents are often chosen from accurate global tidal at-
lases).	Herzfeld	and	Gillibrand	(2015)	noted	that	conditions	
for	 incoming	 tidal	waves	may	be	 reflective	 for	 the	 low-fre-
quency external data and propose OBC based on dual relax-
ation	time	scales.	Furthermore,	the	difference	of	bathymetry	
and representation of the coastline between the parent and 
child models may lead to large inconsistencies between the 
tidal	solutions	in	both	models,	with	a	risk	of	spurious	pat-
terns developing in the coastal domain close to the open 
boundaries	 (e.g.	 rim	 currents).	 Toublanc	 et	 al.	 (2018)	 pro-
posed a simple approach that reduces such inconsistencies 
by pre-processing the tidal forcing using a 2D simulation with 
a	dedicated	2D	tidal	model.	At	last,	filtering	out	the	high-fre-
quency 3D incoming information by using for instance hourly 
or	daily	averages	from	the	parent	simulation,	may	lead	to	a	
loss	of	energy	in	the	coastal	domain,	in	particular	because	of	
the	missing	internal	waves	forcing,	as	recently	evidenced	by	
Mazloff	et	al.	(2020).

Another	difficulty	in	one-way	nesting	arises	from	the	possibil-
ity that the child model develops an internal variability that 
diverges	from	the	parent’s	one.	In	many	operational	systems,	
global or large-scale solutions stem from a data assimilation 
system in which the mesoscale dynamics are constrained by 
satellite	data	 (e.g.	altimetry).	 If	no	data	assimilation	 is	per-
formed	in	the	coastal	domain,	the	developing	mesoscale	(and	
a	fortiori	submesoscale)	may	deviate	from	reality	leading	to	
the undesirable case in which the parent solution is closer 
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to observations at large-scale and mesoscale than the child. 
Sandery	and	Sakov	(2017)	report	that	even	with	data	assim-
ilation,	increasing	the	resolution	does	not	automatically	im-
prove	the	skill	of	the	forecast,	because	of	the	inverse	cascade	
of unconstrained submesoscale towards mesoscale. Methods 
such as spectral nudging are developed to ensure that the 
large-scale	patterns,	e.g.	eddies	or	meandering	jets	that	are	
accurately	represented	in	the	parent	model,	are	maintained	
in the child; an example of such method can be found in Kat-
avouta	and	Thompson	(2016).

A last but not least issue concerns quantifying the errors in 
the child simulations due to the nesting process. The errors 
originate from the OBC scheme (numerical implementation 
and	physical	assumptions)	and	from	the	uncertainties	on	the	
parent	forcing	fields.	In	the	latter	case,	the	question	is	how	the	
parent model errors are downscaled. Ensemble approaches 
can help to characterise and estimate the downscaling of par-
ent	errors,	as	for	instance	explored	in	Ghantous	et	al.	(2020).

Figure 5.7 shows an example of ensemble downscaling of a 
coastal	 ocean	model	 (Symphonie	model,	 500	m	 resolution)	
for the south-east Bay of Biscay in an ensemble of a region-
al	model	 (NEMO,	 1/36°)	 (Ghantous	 et	 al.,	 2020).	 Figure	 5.7a	
presents	 the	 regional	 domain,	 in	 particular	 the	 parent	 do-
main	over	the	map,	while	the	blue	box	is	the	domain	of	the	
child model. Figures 5.7b-d show the ensemble spread (stan-
dard-deviation)	in	sea	surface	height	(SSH)	in	the	domain	of	
the	child	model	for	ensembles	of	50	members.	In	particular,	
Figure	5.7b	is	the	parent	ensemble,	generated	by	perturbing	
the wind in the parent domain; Figure 5.7c is the child ensem-
ble,	 generated	by	perturbing	 the	wind	 in	 the	 child	domain;	
Figure 5.7d is the child ensemble generated by perturbing 
both the wind and the OBC conditions (the OBC perturbations 
stem	from	the	parent	ensemble).	The	numerical	experiment	
reveals	that,	on	average	over	the	period	of	study,	the	spread	
in SSH is greatest where the mesoscale eddies are present (in 
the	deeper	area	of	the	domain).	It	also	reveals	that	the	con-
tribution from the OBC uncertainties is larger than the impact 

Figure 5.7. 	 A	case	study	in	the	south-east	Bay	of	Biscay:	a)	bathymetry	of	the	parent	model	and	bounding	
box	(black	box)	of	the	child	domain;	ensemble	spread	in	SSH	over	3	months	period	(Jan-Feb-Mar)	from	50	en-
semble	members	perturbing;	b)	wind	in	parent	model;	c)	wind	in	the	child	domain;	and	d)	wind	and	OBC	in	the	
child	domain	(from	Ghantous	et	al.,	2020).
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of local wind uncertainties. It is a valuable result for the next 
generation of ensemble data assimilation systems.

An example of nesting capacities of circulation modelling in 
short-term forecast is shown in Figure 5.8. This is the result 
of downscaling the Copernicus Marine Service Iberia-Bis-
cay-Ireland	–	Monitoring	and	Forecasting	Centre	(IBI-MFC,	
🔗1)	product	on	a	higher	spatial	grid;	in	the	bottom	panel	it	
can be seen a detail of surface currents in the Gulf of Cadiz 
and Alborán Sea.

1. https://resources.marine.copernicus.eu/product-detail/
IBI_ANALYSISFORECAST_PHY_005_001/INFORMATION

The downscaling approach is extremely powerful to allow 
the	modeller	to	set	up	an	OOFS	at	high	resolution,	and	every	
OOFS may be used to build another OOFS in a seamless way. 
In Section 5.9 can be found an initial but exhaustive list of 
OOFSs’ providers from which the modeller may select to nest 
her/his new OOFS.

Figure 5.8.  Gulf of Cadiz and the Alborán Sea: example of downscaling capacities. Source: Puertos del Estado 
and Universidad de Málaga.
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5.5.  
Data assimilation systems 
An introduction to the data assimilation concept can be found 
in Section 4.3. This Section focuses on the numerical charac-
teristics of the DAS largely used in circulation modelling.

5.5.1. Basic concepts

In ocean forecasting the objective is to produce an es-
timate xa of the true state xt of the ocean at initial time 
to	initialise	forecasts.	Ide	et	al.,	1997,	De	Mey-Frémaux	et	
al.	(1998),	and	Bouttier	and	Courtier	(2002)	provide	an	ex-
tensive introduction to DAS basic concepts and herein are 
recalled and summarised. 

DA consists in calculating the «best» estimate of the state of 
a	physical	system,	of	its	evolution	in	time,	given	observations	
and a prognostic numerical model.

The basic objective information that can be used to produce 
the analysis is a collection of observed values provided by 
observations of the true state. If the model state is overde-
termined	by	the	observations,	then	the	analysis	is	reduced	
to an interpolation problem. In most cases the analysis prob-
lem is under-determined because data are sparse and only 
indirectly related to the model variables. In order to make it 
a	well-posed	problem,	it	is	necessary	to	rely	on	some	back-
ground information in the form of an a priori estimate of the 
model state. 

A discrete model for the evolution of the ocean from ti to t i+1 
is governed by the following Eq. 5.13:

(5.13)

where x	is	the	so-called	state	vector	(velocities,	temperature,	
salinity,	etc.,	at	model	grid	positions)	and	M is the corre-
sponding dynamics operator. The state vector has dimension 
n. The dynamic operator in Eq. 5.13 is commonly non linear 
and	deterministic,	while	the	true	ocean	state	may	differ	from	
Eq. 5.13 by random and systematic error. 

Observations yo
t at time ti	are	defined	by	Eq.	5.14:

(5.14)

where H is an observation operator and ϵ is a noise process. 
The observation vector has dimension pi. A major problem 
of data assimilation is that typically pi<<n. The observation 
operator H can be also non-linear like M and both can con-
tain explicit time dependence in addition to the implicit de-

pendence via the state vector x f
i ≡ xf(ti).	The	noise	process	

ϵ is commonly used to have zero mean and we denote its 
covariance matrix by R: it consists of instrumental and rep-
resentativeness errors which covariance matrices are E and 
F,	respectively,	with	R=E+F.

The key of the analysis is the use of discrepancies between 
observations and state vector:

(5.15)

When calculated with the background xb it is called innova-
tions and with the analysis xa analysis residuals.

In	the	following,	we	present	two	data	assimilation	types	of	ap-
proaches: the sequential methods and the variational methods.

5.5.2. Sequential methods

Several schemes have been proven useful and implement-
ed using a sequential-estimation approach including the 
Bluelink	Ocean	Data	Assimilation	System	(BODAS)	(Oke	et	
al.,	2008)	and	the	Singular	Evolutive	Extended	Kalman	(SEEK)	
filter	(Pham	et	al.,	1998).	An	extensive	literature	is	available	
on	related	methods,	such	as	OI	(Daley,	1991),	EnOI,	and	EnKF	
(Evensen,	2003).

Following	Ide	et	al.,	(1997),	the	true	ocean	fluid	xf is assumed 
to	differ	 from	 that	of	 the	numerical	model	 (Eq.	 13)	by	 sto-
chastic perturbations:

(5.16)

where η is a noise process with zero mean and covariance 
matrix Q. The EKF consists of a forecast step based on pre-
viously	obtained	state	variables,	which	include	previous	as-
similation	steps, x f(ti+1)	and	an	updated	probability	function	
described by P f(ti):

(5.17)

(5.18)

The core of the Kalman Filter method is an update step in 
which the observations available at time i is blended with 
the	previous	information,	taking	account	of	their	joint	prob-
ability distributions and carried forward by the forecast step:

(5.19)
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(5.20)

where the observation residual or innovation vector is de-
fined	by:

(5.21)

The Kalman gain Ki	is	defined	by:

(5.22)

The innovation vector di is evidently a displacement of the 
modelled	forecast	toward	the	observed	data,	scaled	by	the	
Kalman gain. The Kalman gain accounts for the weighting re-
quired by the joint probability function for the model and 
observation	variability.	In	practice,	various	simplifications	
are introduced to describe P to overcome the computational 
burden	involved	in	the	matrix	calculation	(Oke	et	al.,	2008;	
Pham	et	al.,	1998).

Another example is the OI that is quite frequently used in 
oceanography and meteorology. It is a particular subopti-
mal	filter,	 in	which	 the	EKF’s	error	covariance	matrix	Pf is 
replaced	by	an	approximation,	B,	 computed	as	a	product	
of variances placed in the diagonal matrix D and of cor-
relations placed in a matrix C with unit diagonal (Ghil and 
Malanotte-Rizzoli,	1991):

(5.23)

The state vector is still given by Eq. 5.13. The OI gain writes:

(5.24)

where HiB f (ti)HT
i	is	evaluated	from	the	correlation	model,	

and the state update is given by:

(5.25)

5.5.3. Variational methods

Several schemes have been implemented using variational 
methods	such	as	3D-Var,	e.g.	 the	Navy	Coupled	Ocean	Data	
Assimilation	(NCODA)	(Cummings,	2005)	and	the	Forecasting	
Ocean	Assimilation	Model	(FOAM)	(Martin	et	al.,	2007).	4D-Var	
methods are used extensively in Numerical Weather Predic-
tion and are one of the future directions for ocean prediction 
systems.	The	NEMOVAR	system	(Mogensen	et	al.,	2012)	is	able	
to handle both categories of variational approaches for the 
NEMO modelling system.

Following	Ide	et	al.	(1997),	4D-Var	minimises	the	objective	
function J that measures the weighted sum of distance Jb to 
the background state xb and Jo to the observation yo distrib-
uted over a time interval [t0 , tn ]:

 
(5.26) 

where yi ≡ Hi[x(ti)].	Here	B-1	is	an	a	priori	weight	matrix,	with	
B meant to approximate the error covariance matrix xb,	and	
a minimization is done with respect to the initial state x(t0).	

Equation	5.25	reflects	the	imposition	of	a	strong	constraint	
(Sasaki,	 1970).	Alternative	 formulations	based	on	a	weak	
constraint	are	given	by	Bennett	(1992)	and	by	Menard	and	
Daley	(1996).	Efficient	methods	for	performing	the	minimi-
zation of J require its partial derivatives with respect to the 
elements of x(t0)	given	by:

 
(5.27) 

where:

(5.28)

This follows from:

(5.29)

 
(5.30)

M(ti+1 , ti)T is usually called adjoint model and HT
i is the ad-

joint observation operator. 4D-Var reduces to three-dimen-
sional	variational	assimilation	(3D-Var)	if	the	time	dimension	
is taken out.

Figure 5.9 shows an example of 4D-Var capacity: xa is used as 
the	initial	state	for	a	forecast,	then	by	construction	of	4D-Var	
one is sure that the forecast will be completely consistent with 
the model equations and the 4D distribution of observations 
until the end of the 4D-Var time interval n	(the	cutoff	time).
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5.5.4. Modelling errors

As	reported	in	Bouttier	and	Courtier	(2002),	to	represent	the	
fact that there is some uncertainty in the background and in 
the	analysis,	we	need	to	assume	some	model	of	the	errors	
between these vectors.

Given	a	background	field	xb	just	before	doing	an	analysis,	we	
define	the	vector	of	errors	that	separates	it	from	the	true	state:

(5.31)

If we are able to repeat each analysis experiment a large 
number	 of	 times,	 under	 exactly	 same	 conditions	 but	 with	
different realisation of errors generated by unknown caus-
es,	 b	would	be	different	 every	 time.	 It	 can	be	 represented	
through	a	probability	density	function	(PDF),	able	to	provide	
all	statistics,	 including	 the	average	 (or	expectation)	 -b	and	
the variances. A popular model of scalar pdf is the Gaussian 
function,	that	can	be	generalised	to	a	multivariate	PDF.

The errors in the background and in the observations are 
modelled as follows:

• Background errors. They are the estimation errors of 
the	background	state,	given	by	the	difference	between	
the background state vector and its true value;
• Observation errors. They contain errors in the obser-
vation	 process	 (i.e	 instrumental	 errors),	 errors	 in	 the	
design of the operator H,	and	representativeness	errors	
(i.e. discretization errors which prevent x t from being a 
perfect image of the true state;

• Analysis	error.	Defined	through	the	trace	of	the	cova-
riance matrix A:

(5.32)

They	are	 the	estimation	errors	of	 the	analysis	state,	which	
is	what	we	want	 to	minimize.	 In	a	scalar	system,	 the	back-
ground error covariance is the variance:

(5.33)

In	a	multidimensional	system,	B is a square symmetric ma-
trix with n×n dimension. The diagonal of B contains the vari-
ances,	while	the	off-diagonal	contains	the	cross-covariances	
between a pair of variables in the model. The off-diagonal 
terms can be transformed into error correlations:

 
(5.34) 

The error statistics are functions of the physical processes 
governing the meteorological or the ocean state and the ob-
serving network. They depend on a priori knowledge of the 
errors:	 variances	 reflect	 our	 uncertainty	 in	 features	 of	 the	
background	or	the	observations.	To	estimate	statistics,	it	is	
necessary to assume that they are stationary over a period 
and	uniform	over	a	domain,	so	that	one	can	take	a	number	of	
error realisations and make empirical statistics.

Figure 5.9.  Example of 4D-Var intermittent assimilation in a numerical forecasting system (adapted from 
Bouttier	and	Courtier	2002).
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In	setting	a	DAS,	the	estimated	statistics	is	very	difficult	and	
we can rely on diagnostics of an existing data assimilation 
system using the observational method.

5.5.5. Overview of current data assimilation 
systems in operational forecasting

Data	 assimilation	 techniques,	 schematically	 introduced	 in	
previous paragraphs and that are widely documented in 
Daley	(1991),	Evensen	(2003)	and	Zaron	(2011),	represent	the	
baseline of the modelling framework with general circula-
tion models for operational forecasting and reanalysis. At 
international	level,	the	GODAE’s	OceanView	(Bell	et	al.,	2015)	
and OceanPredict initiatives have promoted strong syner-
gies	with	GOOS,	ETOOFS	and	GEO	BluePlanet	contributing	to	
a	value	chain	from	observations,	data,	information	systems,	
predictions,	 and	 scientific	 assessments	 to	 end	 users,	 with	
the aim to promote the use and impact of observations and 
ocean	predictions	for	societal	benefit,	and	increasing	visibil-
ity of operational oceanography advances.

Martin	et	al.	(2015)	presents	an	overview	of	the	main	character-
istics of the data assimilation used in each GODAE OceanView 
systems; this is a list of the adopted numerical techniques:

• Bluelink	(Oke	et	al.,	2013)	adopts	MOM4	ocean	model	
and EnOI algorithm;
• GIOPS	 (Smith	 et	 al.,	 2016)	 uses	 NEMO	 ocean	model	
and	SEEK	 (with	fixed	basis)	 for	 the	ocean	component,	
and 3DVar for assimilation in the ice component;
• ECMWF	 (Balmaseda	 et	 al.,	 2013)	 uses	 NEMO	 ocean	
model and 3DVar for the assimilation component (+ 
bias	correction	technique);
• FOAM	 (Waters	 et	 al.,	 2014)	 uses	NEMO	ocean	model	
and 3DVar for the assimilation component (+ bias cor-
rection	technique);
• GOFS	 (Cummings	 and	 Smedstad,	 2013)	 uses	 HYCOM	
ocean model with 3DVar data assimilation scheme;
• Mercator	 Ocean	 (Lellouche	 et	 al.,	 2013)	 uses	 NEMO	
ocean	model	with	SEEK-FGAT	(with	fixed	basis)	and	3DVar	
bias correction;
• MOVE	 (Usui	 et	 al.,	 2006)	 uses	 MRI	 COM	 model	 and	
3DVar data assimilation scheme;
• TOPAZ	 (Sakov	 et	 al.,	 2012)	 uses	 HYCOM	 with	 EnKF	
techniques.

Description of the operational initiatives is also provided at GO-
DAE OceanView website (🔗2)	and	OceanPredict	website	(🔗3).

5.6.  
Ensemble modelling 
Numerical	 models,	 applied	 to	 nonlinear	 dynamical	 systems	
such	as	the	ocean,	inevitably	approximate	the	solution	of	the	
so-called	 Navier-Stokes	 shallow-water	 equations,	 because	 of	
limitations in computer power to resolve the whole spectrum of 
geophysical	processes.	In	addition,	numerical	modelling	is	sub-
ject to numerous inherent uncertainties related to modelling 
parameters,	to	forcing	functions,	to	 initial	and	boundary	con-
ditions.	This	is	why	a	single	forecast	is,	to	some	extent,	uncer-
tain,	and	we	use	ensemble	modelling	to	answer	how	uncertain	
a	forecast	is.	Ensemble	prediction	systems	(EPS)	are	well-known	
in atmospheric science communities for more than 25 years 
(Palmer,	2018)	but	are	more	recent	in	operational	oceanography,	
with	marked	advances	in	the	last	decade	(e.g.,	TOPAZ	system,	
Sakov	et	al.,	2012).	EPS	uses	ensemble	modelling	and	adds	other	
components,	such	as	probabilistic	outputs	and	soon	machine	
learning	under	varying	flavours,	with	prediction	as	objective.	In	
most	cases,	EPS	also	incorporates	ensemble-based	data	assim-
ilation	(DA)	to	decrease	forecast	errors.23

2. https://www.godae-oceanview.org/
3. http://oceanpredict19.org

Due	to	the	chaotic	nature	of	the	ocean,	the	probabilistic	ap-
proach is an interesting alternative beyond the classic deter-
ministic	 approach,	 and	 it	 can	 help	 users	 to	 interpret	model	
predictions supplemented by their uncertainties. Ensemble 
modelling consists of possible ocean states using Monte Carlo 
techniques	to	sample	the	probability	density	function	(pdf)	of	
the model forecast. Each model simulation is called an ensem-
ble member. This approach is illustrated in Figure 5.10a. The en-
semble is initialised by a sample of different initial conditions 
(e.g.	perturbed	analyses	in	DA).	The	model	operator	(which	can	
be	also	perturbed	during	integration)	is	then	used	to	bring	for-
ward in time each member and produce an ensemble of model 
simulations. The ensemble members may diverge radically or 
remain	broadly	 similar,	 resulting	 in	a	 forecast	PDF.	A	quanti-
tative assessment of the ensemble is depicted in Figure 5.10b. 
The ensemble mean and spread (estimating model uncertain-
ty)	are	calculated	as	first	and	second	order	statistical	moments	
from	the	members,	and	can	be	compared	with	the	unperturbed	
deterministic simulation and the climatology (and to observa-
tions,	 if	 available).	 The	 ensemble	 spread	 is	 flow-dependent	
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Figure 5.10. (a)	Schematic	of	an	ensemble	simulation	with	equiprobable	forecasts	(blue	trajectories);	the	
forecast	pdf	gives	an	indication	of	the	likelihood	of	occurrence	of	the	different	states;	(b)	Schematic	of	the	
flow-dependent	ensemble	spread	in	relation	to	the	ensemble	mean,	an	individual	member,	the	unperturbed	
deterministic	run,	and	the	climatology	(credits:	🔗4).

and varies for different state variables. Ensemble forecasting 
aims	at	quantifying	this	flow-dependent	uncertainty.	EPS	are	
highly demanding systems in terms of computational resourc-
es	and	can	be	run	efficiently	in	HPC	facilities.	A	major	challenge	
for the next generation of OOFSs is to improve their services by 
integrating ensemble capabilities in their systems.

5.6.1. Basic concepts

There are three main categories of ocean model ensembles: 
(a)	 multi-model	 ensembles,	 e.g.	 Copernicus	 Marine	 Service	
multi-model products and CMIP6 coupled models for climate 
studies 4(🔗5);	 (b)	 stochastic	 model	 ensembles,	 used	 in	 re-
search	e.g.	the	OCCIPUT	project	(Penduff	et	al.,	2014),	and	less	
frequently in operational oceanography due to their computa-
tional	cost;	and	(c)	ocean	model	response	to	an	atmospheric	
EPS,	e.g.	using	the	ECMWF-EPS	atmospheric	forcing(🔗6).	

4.https://confluence.ecmwf.int/
5. https://www.wcrp-climate.org
6. https://www.ecmwf.int/en/forecasts

The focus here is on the practical aspects for the implemen-
tation	of	a	stochastic	ocean	model,	mainly	for	short-	to	me-
dium-range forecasting applications. The notion “stochastic 
model” for a system exhibiting chaotic behaviour can be de-
fined	by	 the	partial	differential	 Fokker-Planck	equation,	de-
scribing	the	temporal	evolution	of	the	state	pdf,	controlled	by	
stochastic	diffusion	and	advection	processes,	and	local	model	
tendencies. Stochastic modelling is used to represent mod-
el errors and as an ulterior step can be integrated in ensem-
ble-based DA. Several methods and tools to produce stochas-
tic model ensembles have been discussed in the literature 
following the SANGOMA project (🔗7).	

The	main	objectives	of	(ensemble)	stochastic	modelling	are:	
(a)	 the	estimation	of	model	uncertainties	providing	 realis-
tic	error	bars	and	confidence	 intervals	at	useful	ranges	for	
ocean	 predictions;	 and	 (b)	 using	model	 uncertainties	 in	 a	
DA framework to enrich background error covariances with 
flow-dependent	errors	and	improve	model	prediction	at	the	
range of the outer loop of the DA scheme. The most useful 

7. http://www.data-assimilation.net
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statistical	properties	are	the	ensemble	mean,	the	covarianc-
es	and	spread	given	by	the	diagonal	of	the	covariance	matrix,	
and	sometimes	the	higher	order	moments	(Quattrocchi	et	al.,	
2014).	Stochastic	ensembles	are	not	used	solely	for	DA	but	
can	be	applied	also	as	a	machine	learning	base	for	artificial	
intelligence	 applications,	 guiding	 observational	 strategies	
based	on	array	design	(Charria	et	al.,	2016;	Lamouroux	et	al.,	
2016),	 and	 enabling	 probabilistic	 forecasting	 (Cheng	 et	 al.,	
2020),	e.g.	occurrence	of	ocean	upwelling	or	bloom	events,	
occurrence of sea level and storm surge exceeding a particu-
lar	threshold,	sea	ice	concentration,	etc.

The	main	elements	to	be	decided	and	identified	when	gen-
erating	an	ocean	model	ensemble	are:	(a)	the	relevant	quan-
tities	 to	 perturb;	 (b)	 the	 stochastic	 parameterizations;	 and	
(c)	 the	 dynamical	 balances	 that	must	 be	 preserved,	 if	 any	
(which	in	turn	influence	choices	in	(a)).	These	notions	are	of-
ten combined under the term “stochastic physics”.

The	ensemble	verification	is	an	important	integral	part	of	the	
ensemble modelling and EPS-developing process. An ensem-
ble empirical consistency aims at verifying a posteriori the 
model	pdf	approximated	by	the	ensemble	of	forecasts,	with	
respect to existing observations and their pdfs. The under-
lying notion is the model and data joint probability on the 
right-hand-side of the equal sign in the Bayes theorem. Em-
pirical	consistency	can	be	explored	by	specific	criteria	and	
analysis	tools,	e.g.	from	rank	histograms	being	the	simplest	
measuring	“reliability”	(Candille	and	Talagrand,	2005)	to	Des-
roziers	et	al.	 (2005)	consistency	diagnostics	on	innovations	
and ensemble pattern-selective consistency analysis (Verva-
tis	et	al.,	2021a).	The	“reliability”	measures	to	which	degree	
the forecast probabilities agree with outcome frequencies 
and is an important attribute for the development of prob-
abilistic scores. Such scores are for example the Continuous 
Rank	Probability	Score	(CRPS)	(Hersbach,	2000;	Candille	and	
Talagrand,	2005)	and	the	Brier	Score	measuring,	in	addition	
to	 “reliability”,	 the	 attribute	 of	 “resolution”.	 For	 a	 reliable	
EPS,	 “resolution”	 is	 the	 ability	 to	 separate	 cases	 when	 an	
event	occurs	or	not,	 i.e.	probabilities	being	close	to	0	or	1.	
The ensemble consistency evaluation framework provides 
important information to test the relevance of an EPS when 
the	system	is	set-up	(e.g.	the	ensemble	size).

5.6.2. Ocean model uncertainties

Ocean model uncertainties emerge from sources of errors rel-
evant	to	the	ocean	state,	including	physics,	biogeochemistry,	
and	sea	ice,	as	well	as	errors	in	the	initial	state	and	boundary	
conditions (i.e. atmospheric forcing and lateral open bound-
ary	 conditions).	 Model	 uncertainties	 in	 ocean	 physics	 have	
a	significant	 impact	 in	all	other	system	components	as,	 for	
example,	in	biogeochemistry	and	sea	ice.	The	choice	of	the	
perturbed	model	quantities	depends:	 (a)	on	the	ocean	ap-
plication,	e.g.	global	vs	regional	and	coastal	configurations,	

and	short-	 to	medium-	or	 seasonal-range	 forecasts;	 (b)	on	
the	processes	 resolved	by	 the	model	 (or	not,	such	as	sub-
grid	scale	processes);	(c)	on	choices	in	the	DA	framework,	e.g.	
variational	and	Kalman	filter	approaches,	variables	and	pa-
rameters	included	in	the	control	vector,	assimilated	observa-
tions	etc.;	and	(d)	on	the	dynamical	balances	the	user	wants	
to	preserve	in	the	perturbation	space,	e.g.	leaving	velocities	
unperturbed tends to preserve the degree of geostrophy of 
the ocean state.

Recent advances in NEMO incorporated an easy-to-use mod-
elling framework for the production of ocean model ensem-
bles	(Brankart	et	al.,	2015),	including	the	following	schemes	
applied	also	in	NWP	systems:	SPPT	(Buizza	et	al.,	1999),	SPUF	
(Brankart,	2013),	SPP	(Ollinaho,	et	al.,	2017)	and	SKEB	(Berner	
et	al.,	2009).	The	stochastic	parameterizations	in	all	schemes	
are	implemented	via	first-order	autoregressive	Markov	pro-
cesses,	i.e.	a	statistical	model	based	on	the	assumption	that	
the past value of uncertainty determines the present with-
in some error. Several studies expand the NEMO ensemble 
framework	(Bessières	et	al.,	2017;	Vervatis	et	al.,	2021b),	 in-
corporating a stochastic ocean physics package (Storto and 
Andriopoulos,	2021).

The	SPPT	perturbs	the	net	parameterized	model	tendencies,	
assumed to contain upscaled ocean model errors due to sub-
grid parameterizations. The SPUF scheme is based on random 
walks sampling gradients (which represent the sub-grid unre-
solved	scales)	from	the	state	vector	and	adding	them	to	the	
models’ solution; the random walks consist of independent 
consecutive steps in all directions. The SPP introduces per-
turbations at each time step to parameters within the model 
parameterization schemes. The SKEB adds perturbations to 
the	barotropic	stream	function,	upscaling	a	fraction	of	the	dis-
sipated	energy	back	to	the	resolved	flow,	which	is	often	useful	
assuming that the inverse cascade of energy is underestimat-
ed in ocean models due to unresolved sub-grid processes.

Selecting the appropriate perturbation scheme and properly 
tuning the stochastic parameterizations for the autoregressive 
processes	(for	each	of	the	perturbed	model	quantities)	are	es-
sential steps to produce meaningful stochastic ensembles. All 
stochastic perturbation schemes have their advantages and 
disadvantages	 (e.g.	 energy	 and	mass	 conservation	 laws,	 pro-
duction	of	over/under-dispersive	ensembles,	etc.),	though	the	
SPPT scheme appears to be the most effective (in terms of gen-
erating	sufficient	model	spread)	and	easiest	to	use	(in	terms	of	
stochastic	parameterizations)	for	many	model	quantities.

A common approach to generate stochastic ocean model en-
sembles is by using a pseudorandom combination of multivar-
iate	empirical	orthogonal	functions	(EOFs)	to	perturb	the	wind	
forcing	 (Vervatis	et	al.,	2016).	The	wind	has	a	 large	 impact	on	
upper-ocean model uncertainties because it controls the Ek-
man and geostrophic components of the Sverdrup dynamics; it 
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also largely drives the shelf-seas dynamics in addition to tides. 
In	general,	all	surface	atmospheric	forcing	variables	constitute	
major	sources	of	ocean	model	uncertainties.	Momentum,	heat,	
and	 freshwater	fluxes	are	key	quantities	coupling	 the	air-sea	
processes	and	are	parametrized	 in	terms	of	bulk	coefficients.	
These model parameters can also be stochastically perturbed 
(in	addition	to	atmospheric	forcing)	with	spatiotemporal	vary-
ing	patterns	(or	by	applying	simple	Gaussian	noise,	if	there	is	no	
information	available	regarding	their	scales).

Complementary	 to	 stochastic	 approaches,	 ocean	 model	
uncertainties can be introduced by making use of an at-
mospheric ensemble. Using an atmospheric EPS does not 
necessarily outperform the stochastic modelling approach 
in	terms	of	ocean	model	spread.	 In	general,	 it	takes	longer	
for	the	ensemble	to	spin-up	and	increase	its	spread,	and	the	
method also requires a large amount of data to process. On 
the	other	hand,	the	main	advantage	of	using	an	atmospheric	
EPS	is	the	realism	of	the	fields	in	terms	of	conserved	quan-
tities. A common approach of a marine EPS generated by an 
atmospheric	EPS,	used	successfully	at	operational	centres,	is	
the	ocean	wind-wave	ensemble	forecasting	(Janssen,	2004).

In	the	ocean	interior	below	the	seasonal	thermocline,	model	
uncertainties can be introduced effectively by perturbing the 
ocean boundary conditions and the water column proper-
ties.	 Such	 perturbations	 are	 usually	 difficult	 to	 implement	
because of the need to ensure physical consistency in the 
water	column,	and	because	errors	in	the	prescribed	bound-
ary	 fields	 are	 usually	 unknown.	 A	 favourable	 solution	 for	
the open boundaries is when a coarse parent ensemble is 
available providing uncertainty estimates to the nested child 
model	(Ghantous	et	al.,	2020).

Methods incorporating polynomial chaos expansions along 
with EOF-based perturbations of temperature and salinity 
profiles	 in	 isopycnal	coordinate	space,	can	be	applied	effi-
ciently in estimating model error propagation in the open 
boundaries	(Thacker	et	al.,	2012).	Model	uncertainties	affect-
ing also the water column properties can be applied in the 
equation of state by perturbing the temperature and salinity 
state,	using	the	SPUF	method	aimed	at	representing	sub-grid	
unresolved scales. Other quantities that can be perturbed in 
the ocean interior and its boundaries are the model bathym-
etry	influencing	the	barotropic	and	baroclinic	states	(Lima	et	
al.,	 2019),	 the	bottom	drag	coefficient	affecting	 the	bottom	
Ekman	flow	transport	and	tidal	mixing	in	shelf-seas	(Vervatis	
et	al.,	2021b),	and	the	SSH	together	with	depth	integrated	ve-
locities	in	tidal	open	boundaries	(Barth	et	al.,	2009).

Inflation	methods	 and	 bred	 vectors	 for	 short-range	 ocean	
prediction systems can be used to initialise an ensemble of 
forecasts. The choice of perturbing initial conditions is also 
relevant	to	DA,	for	example	using	ensemble-based	hybrid	vari-

ational methods such as the 4D-EnsVar controlling (possibly 
among	other	quantities)	the	initial	conditions.

Ensemble-based DA methods are used to improve the predic-
tive skill of biogeochemical and sea-ice models. In these Earth 
system	components,	model	errors	stem	from	unresolved	diver-
sity,	unresolved	scales,	and	multiple	model	parameterizations.	
The unresolved diversity refers for example to the biodiversity 
restriction,	including	only	a	few	species	in	the	biogeochemical	
model,	and	to	restrictions	in	the	categorization	of	sea-ice	in	
an effort to reduce complexity and state variables. These di-
versity restrictions often lead to missing model processes that 
are instead approximated by parameterizations. On the other 
hand,	the	unresolved	scales	depend	on	the	model	resolution	
(in	a	way	similar	to	the	unresolved	scales	for	physics).

In	 this	 context,	 the	 most	 common	 quantities	 to	 perturb	 in	
biogeochemical models are the sources and sinks (e.g. pho-
tosynthesis,	respiration,	death,	and	grazing),	and	the	biogeo-
chemical parameters controlling some of these processes (e.g. 
growth	and	mortality	rates,	nutrient	limitations,	grazing,	etc.)	
(Santana-Falcón	 et	 al.,	 2020).	 Other	 biogeochemical	 model	
state uncertainties depend on the water column optical prop-
erties	and	the	penetrative	solar	radiation,	affecting	photosyn-
thesis	and	primary	production	(Ciavatta	et	al.,	2014).	An	ana-
morphosis transformation in lognormal space is required for 
any use of the stochastic biogeochemical outputs that involve 
Gaussian	distributions,	such	as	variance	analysis	or	DA	(Simon	
and	Bertino,	 2009).	 This	 latter	 attribute	 of	 selecting	 a	 posi-
tive distribution function to introduce model uncertainties is 
also	 followed	 for	 sea-ice	perturbations,	 e.g.	 using	 a	 gamma	
distribution for the sea-ice strength variable to improve DA 
and model performance for sea-ice concentration and sea-ice 
thickness	(Juricke	et	al.,		2013).

5.6.3. Towards ocean EPS

A summary of the practical aspects and challenges of a road-
map towards ocean probabilistic forecasting for the next gen-
eration	of	OOFS	 is	as	 follows.	 Initially,	ensemble	 forecasting	
should be developed and tested without the use of DA. This 
will	 allow	 operational	 centres	 to	 coordinate	 their	 activities,	
such	as:	(a)	preparing	OGCM	platforms	for	the	production	of	
ensembles,	e.g.	several	choices	among	regional	centres	tuning	
the	 stochastic	 parameterizations;	 (b)	 integrating	 ensembles	
in their operational chain assessing the computational cost 
(doubled	for	DA)	and	which	variables	are	essential	to	archive;	
and	 (c)	 providing	 tools	 for	 the	 interpretation	of	 uncertainty	
estimates as well as guiding users to extract information from 
ensembles,	e.g.	ocean	indices	for	the	probabilistic	detection	of	
events.	An	open	issue	in	this	first	step,	without	DA,	is	how	en-
sembles are going to be initialised in an operational context. 
In	a	second	step,	within	a	DA	framework,	the	initialization	of	
the ensemble is part of the DA process.
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5.7.  
Validation strategies
As	explained	in	Section	4.5.2,	four	classes	of	metrics	(Figure	
4.30)	were	defined	and	adopted	by	GODAE	OceanPredict	and	
have been extensively used for the validation of OO mod-
el	products	since	 the	first	validation	and	 intercomparisons	
exercises	 (Crosnier	and	Le	Provost,	2007;	Ryan	et	al.,	 2015).	
It is indeed necessary to use a complete range of statistics 
and comparisons in space and time to properly assess the 
consistency,	representativeness,	accuracy,	performance,	and	
robustness	of	ocean	model	outputs.	One	of	the	first	steps	at	
all stages of the validation procedure is usually to compare 
the	surface	 temperature	 (analysed,	and	at	various	 forecast	
length)	with	contemporaneous	satellite	observations,	which	
is	a	good	example	of	CLASS1	metrics	(Figure	5.11).	Sea	surface	
temperature is a signature of ocean-atmosphere interactions 
and	 it	 is	 critical	 for	many	maritime	applications,	while	be-
ing one of the major sources of uncertainty for ocean mod-
el analyses and forecasts. This type of comparison allows a 
day-to-day control of atmospheric forcing inconsistencies 

and large scale features of the systematic biases can also be 
monitored on the longer terms.

Another important step is to check the local behaviour of 
the model analyses and forecast for several time frequencies 
(tidal,	non-tidal)	using	fixed	buoys	observations,	for	instance	
for	sea	surface	height	against	tide	gauges	(CLASS2	metrics,	
Figure	5.12).	This	type	of	metrics	 is	essential	 for	the	overall	
assessment of the representativeness of a physical model 
solution. Many statistical estimators can be used to compare 
models to observations within this CLASS1 and CLASS2 frame-
work,	but	also	spectral	analysis,	extreme	events	characteri-
zation,	and	mesoscale	feature	detection	can	be	performed	at	
this stage. This surface “satellite” approach (2-dimensional 
with	time)	and	local	approach	(1-dimension	with	time)	must	
be combined with the monitoring of the basin scale or global  
scale	behaviour	of	 the	ocean,	 integrated	 in	space	 (3-dimen-
sions)	and/or	time,	such	as	the	validation	and	intercomparison

Figure 5.11. Copernicus Marine Service global model SST analysis minus gridded supercollated SST observa-
tions	on	03/30/2021	(°C).
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8.https://marine.copernicus.eu/access-data/ocean-monitor-
ing-indicators/mean-heat-transport-across-sections

Figure 5.12. 	Correlation	(left)	and	RMS	difference	(cm)(right)	between	the	Iberia-Biscay-Ireland	model	
analyses by Copernicus Marine Service and the observations of the residual elevation at tide gauges´ locations 
(January	2017	to	December	2018)	(courtesy	of	Bruno	Levier,	Mercator	Océan).

Figure 5.13. 	Heat	transport	(PW)	from	Copernicus	Marine	Service	global	reanalysis	ensemble	product	(🔗8)	
compared	with	estimates	of	Lumpkin	and	Speer	(2007).	Uncertainty	ranges	are	derived	from	the	ensemble	
standard	deviation.	Arrows	indicate	the	direction	of	the	mean	flow	through	the	sections.
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of ocean monitoring indicators. The intercomparison of inte-
grated	heat	transports	(CLASS3	metrics,	Figure	5.12)	with	val-
ues	 from	the	 literature	 (Lumpkin	and	Speer,	2007)	 is	a	good	
example	of	diagnostic	which	 can	help	 identify	biases,	drifts	
or limitations in the model’s representation of the ocean cir-
culation,	while	 it	 also	provides	 valuable	 information	on	 the	

ocean	 state	 and	 variability.	 Additionally,	 the	 intercompari-
son	 of	 several	 model	 estimates,	 whenever	 possible,	 allows	
to derive a range of likely values for ocean monitoring indi-
cators,	and	 to	assess	 the	 robustness	of	 the	model	 solution.	 
In Figure 5.13 the standard deviation between four ocean re-
analyses	(varying	in	their	configuration	and	data	assimilation	

Figure 5.14. 	Performance	of	GODAE	OceanPredict	global	forecasting	systems,	in	terms	of	global	mean	depar-
tures	from	salinity	in-situ	profiles	observations	(psu)	in	the	0-500m	layer.	The	time	evolution	of	the	mean	bias	
between	the	model	forecast	(12h)	and	the	observations	is	shown	by	dotted	lines,	and	the	root	mean	square	
difference	is	shown	by	solid	lines	(courtesy	of	Charly	Régnier,	Mercator	Ocean).

Figure 5.15. 	Results	of	a	Lagrangian	experiment.	Panels:	a)	the	metric	corresponds	to	the	distance	sepa-
rating	the	true	position	of	the	particle	in	NR	with	that	of	the	OSSE1	(3Nadir)	after	7	days,	averaged	in	5-de-
gree	bins;	b)	and	c)	show	the	average	change	in	separation	distance	(reduction	in	blue)	obtained	when	using	
instead	OSSE2	and	OSSE3	surface	currents,	with	an	overall	improvement;	and	d)	global	distributions	of	the	
separation	distance	in	each	experiment	(courtesy	of	Simon	van	Gennip,	Mercator	Ocean).
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settings)	based	on	the	same	model	(NEMO)	were	used	to	derive	
the uncertainty associated with each heat transport estimate.

Finally,	CLASS1-2-3	must	be	complemented	by	quality	indica-
tors	averaged	in	space	at	basin	scale,	and	possibly	in	time,	
in order to monitor and quantify the individual performance 
of	model	solutions.	To	this	aim,	data	assimilation	misfits	(in-
novations	and	 residuals)	are	extensively	used,	as	observa-
tion	operators,	developed	within	data	assimilation	schemes,	
usually provide the most adequate transposition of the model 
solution into the observations’ space. CLASS4 metrics can be 
computed	offline	in	delayed	time,	outside	of	the	data	assimi-
lation	process,	to	add	the	possibility	to	compare	residual	dif-
ferences with one given observation between various forecast 
lengths,	 to	 compare	 with	 climatology	 and	 persistence,	 and	
finally	to	derive	forecast	skill	scores.	Hence,	independent	ob-
servations	(not	assimilated)	can	be	used	to	compute	CLASS4	
metrics,	and	reference	datasets	can	be	defined	to	build	robust	

intercomparison	frameworks.	For	instance,	ARGO	floats	mea-
surements are only used by the GODAE OceanPredict commu-
nity in order to measure performance in salinity as illustrated 
by	Figure	5.14	(Ryan	et	al.,	2015).	A	spike	in	the	statistics	corre-
sponds	to	a	campaign	at	sea	in	the	Arctic	in	2018,	which	shows	
that,	 despite	 a	 growing	 observing	 network,	 these	 statistics	
suffer from representativeness issues.

As	at	high	resolution	(a	few	km	or	less)	the	small	scales	are	not	
constrained	by	observations,	the	performance	measured	by	di-
rect or statistical comparisons to observations may not be as 
good	as	for	coarser	model	solutions,	which	is	referred	to	as	the	
“double	 penalty”	 effect	 (Ebert,	 2009).	 Neighbourhood	 metrics	
(Mittermaier	et	al.,	2013,	2021)	focus	on	the	ability	of	a	model	to	
forecast a range of events within a neighbourhood in space and 
time,	and	for	which	the	direct	or	statistical	comparisons	to	ob-
servations at all time and space scales would not be informative.  

Figure 5.16. 	a)	SLA	along	track	L3	observation	distribution	(in	meters)	and	two	model	ensembles	in	data	
space;	(b)	"Observation	minus	Ensemble"	map	for	a	period	starting	on	25	February	2012	and	for	three	consecu-
tive	weeks;	(c)	box-whisker	plots	and	observation	error	bars	averaged	over	the	abyssal	plain;	(d)	the	Armorican	
shelf;	and	(e)	the	English	Channel.
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5.8.  
Outputs
Information on formats and types of outputs of all kinds of 
OOFS can be found in Chapter 4. The following section treats 
only	some	specific	aspects	related	to	circulation	modelling.

5.8.1. Variables/EOV

The circulation modelling variables describe any system re-
lated to the production of 3D ocean dynamics variables.

The main physics variables (with their abbreviation or acro-
nym)	are:

• Temperature

• temperature	[T]
• sea	surface	temperature	[SST]
• bottom	temperature	bottom	[bottomT]

• Density	[D]
• Salinity	[S]
• Sea	Surface	Height	[SSH]

• above sea level
• above geoid
• geopotential height

• Velocity
• Velocity	[UV/W]

• geostrophic	velocity	[UV/UVG]
• barotropic	velocity	[UVB]

• Mixed	Layer	Depth	[MLD]
• Sea Ice

• sea	ice	concentration	[SIC]
• sea	ice	edge	[SIE]
• sea	ice	extent	[SIE]
• sea	ice	thickness	[SIT]
• sea	ice	velocity	[SIUV]
• sea	ice	drift	[SIUV]
• snow	[SNOW]
• iceberg	[ICBG]
• sea	ice	age	[SIAGE]
• sea	ice	albedo	[SIALB]
• sea	ice	temperature	[IST]

The variables follow the CF standards. The CF Metadata Con-
ventions	are	a	widely	used	standard	for	atmospheric,	ocean,	
and	climate	data.	Standard	names	are	defined	in	a	CF	Stan-
dard Name Table (see 🔗9).

9. http://cfconventions.org/standard-names.html

Additionally,	 “user	oriented”	metrics	 focusing	on	processes	
or using downstream applications can reduce this effect and 
allow	to	better	assess	the	fit-for-purpose	of	ocean	analyses	
and	forecasts,	among	which	we	can	cite	eddies	(Mason	et	al.,	
2014),	fronts	detection	(Ren	et	al.,	2021),	and	lagrangian	drift	
scores. Lagrangian separation distance scores and distribu-
tions	(shown	in	Figure	5.15)	are	a	primary	validation	diagnos-
tic when studying the impact of changes in the observations 
network	(Tchonang	et	al.,	2021).	Figure	5.15	shows,	in	particular,	
results of a Lagrangian experiment wherein particles seeded 
in	every	model	grid	cell	(1/12	degree	resolution)	and	advected	
for 7 days in the Nature Run and three different OSSEs sur-
face currents (OSSE1 collecting and assimilating 3 nadir-like 
satellite	altimeters,	and	OSSE2	SWOT-like	satellite	altimeter,	
and	OSSE3	nadir-like	and	one	SWOT-like	satellite	altimeters).	

Ensemble scores applied to ensemble forecasts (see Section 
5.6)	also	allow	better	study	of	predictability	and,	eventually,	to	
validate and quantify the skill of the forecast. This is needed 

in	particular	for	mesoscale	features	(Thoppil	et	al,.	2021).	In	the	
near	future,	it	 is	essential	to	add	this	type	of	verification	and	
quantification	of	uncertainty	to	the	range	of	validation	metrics.	
Figure 5.16 illustrates examples of ensemble diagnostics (Ver-
vatis	et	al.,	2021a)	important	to	be	checked	in	the	development	
phase and during the production to verify consistency between 
ensemble model distribution and observation. Figure 5.16a 
compares	 the	distribution	of	observations	 (light	 grey)	 and	of	
two	ensemble	simulations	(dark	grey);	a	good	quality	criterion	
is the distribution of ensemble members overlapping the dis-
tribution	of	the	observations,	if	this	should	not	be	investigated.	
Figure 5.16b shows the bias between ensemble members and 
observations in the observations’ space for a dedicated period. 
Errors	can	also	be	quantified	in	physically	consistent	domains	
as	 illustrated	 in	 Figure	 5.16c,	 where	 the	 consistency	 between	
box-whisker plots of the ensemble members distributions and 
error bars can be assessed for observations in the same area.
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5.9.  
Inventories

The purpose of this section is to provide an initial inventory 
of	the	operational	Near	Real	Time	(NRT)	and		Multi	Year	(MY)	
systems operating at international level. Details about the 
specific	 system,	 resolution,	 implemented	 circulation	 mod-
el,	and	data	assimilation	are	provided	in	the	following	lists,	
along with the observations used for assimilation and as-
sessment,	 summary	of	 the	main	offered	product	catalogue	
and,	where	existing,	 the	website	address	to	directly	 link	to	
systems products and other relevant information.

5.9.1. Inventory of operational global to 
regional to coastal to local forecasting systems

The present state-of-the-art operational systems for NRT 
products from global to local scale is presented in Table 5.2. 
This proposed inventory has been prepared in collaboration 
with	 the	 Coastal	 and	 Shelf	 Seas	 (COSS-TT)	Working	 Group,	
one of the OceanPredict Task Teams. An evolutive list of Re-
gional/Coastal	Ocean	Forecasting	Systems	(R/COFS)	is	main-
tained	by	the	COSS-TT	in	the	System	Information	Table	(SIT)	
(latest version available at 🔗10).	Due	to	the	shorter	lifespan	
and more frequent updates in coastal systems compared 
to	global	and	basin-scale	systems,	the	SIT	 is	frequently	re-
freshed and then please refer to the latest online version 
for up-to-date information. In addition to operational/NRT 
systems,	the	online	SIT	contains	also	tools	(e.g.	used	for	ap-
plications,	crisis-time	scenarios,	etc.),	research	and	pre-op-
erational	models,	etc.

5.9.2. Inventory of multi-year systems

Starting	from	the	list	in	Balmaseda	et	al.	2015,	an	initial	in-
ventory	 of	 state-of-the-art	MY	 systems	has	been	prepared	
(Table	5.3).	As	in	Table	5.2,	for	each	system	is	provided	scale	
(from	global	to	regional),	resolution,	models,	and	providers,	
as well as relevant links to web pages that the reader may 
consult for further details. 

10. https://oceanpredict.org/science/task-team-activities/
coastal-ocean-and-shelf-seas/#section-sit
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Table 5.2. Initial	inventory	of	global	(G)	to	regional	(R)	to	coastal	(C)	to	local	(L)	operational	forecasting	systems.

WebsiteProductsData used for 
assimilation 

and assessment

Downscaling/
nesting

Circulation 
model

ResolutionAreaSystemScale

https://re-
search.csiro.
au/bluelink/
global/fore-
cast/

https://
science.
gc.ca/eic/
site/063.nsf/
eng/h_97631.
html

https://ec-
co-group.org/
products-EC-
CO-V4r4.htm

https://www.
metoffice.gov.
uk/research/
weather/
ocean-fore-
casting

https://www.
metoffice.gov.
uk/research/
weather/
ocean-fore-
casting

https://in-
cois.gov.in/

G

G

G

G

G

G

OceanMAPS,	
BLUElink (Bureau 
of	Meteorology)

CONCEPTS GIOPS 
(Government of 

Canada)

ECCO: Estimating 
the Circulation 
and Climate of 

the Ocean

FOAM: Forecast 
Ocean Assim-
ilation Model 

system

NAVOCEANO,	
the US Naval 

Oceanographic 
Office	(US)

INCOIS,	the	
Indian National 

Centre for Ocean 
Information 

Service

Global 
ocean

Global 
ocean

Global 
ocean

Global 
ocean

Global 
ocean

Global 
ocean

0.1 degree grid 
spacing at 

the Australia 
region

1/4° horizon-
tal resolution

The horizontal 
resolution 

varies spatial-
ly from 22 km 

to 110 km

1/4° horizon-
tal resolution

1/12° horizon-
tal resolution

horizontal 
resolution at 
1/4° with 40 

vertical sigma 
levels

MOM4

NEMO

MITgcm

NEMO

HYCOM

ROMS

BODAS is an en-
semble optimal 

interpolation 
system used to 

assimilate avail-
able in-situ and 

satellite obs.

SEEK	scheme,	
using	INS,	SLA,	

SST obs.

Assimilation of 
INS,	SLA,	SST	

obs.

NEMOVAR 
(3D-Var	scheme)	
using	INS,	SLA,	

SST obs.

Hybrid data 
assimilation 

scheme

N/A

N/A

N/A

N/A

N/A

N/A

N/A

Daily	T,	S,	SSH	
and UV

Daily 10-days 
forecast	for	T,	S,	
SSH,	UV,	sea	ice	
concentration

Daily forecast 
for	T,	S,	SSH,	UV,	
fluxes,	sea	ice

Daily	mean,	
analysis and 

five-day	forecast	
for	T,	S,	SSH,	UV,	

sea ice

Daily forecast 
for	ocean	fields

Daily 5 days 
forecast for 

surface	UV,	SST,	
MLD,	waves	and	

winds
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WebsiteProductsData used for 
assimilation 

and assessment

Downscaling/
nesting

Circulation 
model

ResolutionAreaSystemScale

https://gofs.
cmcc.it/

https://
marine.
copernicus.eu

https://
marine.
copernicus.eu

https://
marine.
copernicus.eu

https://
marine.
copernicus.
eu,	https://
medfs.cmcc.
it/

https://
ds.data.jma.
go.jp/tcc/tcc/
products/
elnino/move_
mricom-g2_
doc.html

G

G

R

R

R

G/R

GOFS16 CMCC 
Global Ocean 
Forecasting 

System

Global MFC by 
Copernicus 

Marine Service  
(MOI,	France)

Arctic MFC by Co-
pernicus Marine 
Service	(NERSC,	

Norway)

Baltic MFC by Co-
pernicus Marine 
Service	(SHMI,	

Sweden)

Mediterranean 
Sea MFC by Co-
pernicus Marine 
Service	(CMCC,	

Italy)

MOVE/MRI.COM-
JPN	(MRI,	Japan)

Global 
ocean

Global 
ocean

Arctic 
Region

Baltic 
Sea

Medi-
terra-
nean 
Sea

Global,	
North 
Pacific,	
Japan

1/16° horizontal 
resolution and 98 

vertical levels

1/12° horizontal 
resolution and 50 

vertical levels

12.5 km at the 
North Pole

0.028 degrees x 
0.017 degrees in 

horizontal and 56 
levels

1/24° in horizontal 
and 141 vertical 
levels,	2-way	cou-
pled to WW3 wave 

model

Double nested 
system consisting 
of	global	(GLB),	
North	Pacific	(NP)	
and	Japan	area	
(JPN)	models

Ocean model : MRI.
COM with resolu-
tions:	(JPN)	1/33°	
x	1/50°,	60	levels;	
(NP)	1/11°	x	1/10°,	
60	levels;	(GLB)	
1°x1/2°	(tripolar),	

60 levels

NEMO

NEMO

HYCOM

NEMO

NEMO

MRI.COM

OceanVar 
(3D-Var	scheme)	
using	INS,	SL,	
SST,	SICE	obs.

SAM2 (SEEK 
scheme)	using	
INS,	SLA,	SST	

obs.

EnKF assimi-
lation scheme 
using	INS,	SLA,	
SST and SICE 

obs.

PDAF LESTKF 
univariate for 

SST

OceanVar 
(3D-Var	scheme)	
using	INS,	SL,	

SST obs.

4DVAR (applied 
to a reduced 

grid version of 
NP	model).	As-
sessment: Tide 
gauge,	In-situ	
observations 
(buoy,	T-S	pro-
files),	HF	radars,	
satellite	(SST,	
SSH,	sea	ice	

concentration),	
volume trans-

port at repeated 
hydrographic 

sections.

N/A

N/A

N/A

1-way nested 
into NWS-MFC 

Copernicus 
Marine Service 

regional 
product

1-way nested 
into GLO-MFC 
Copernicus 

Marine Service 
(1/12°,	50	ver-
tical	levels)

Downscaling: 
one/two-

way nesting 
with IAU 

initialization

Daily analysis 
and 7 days fore-
cast	for	T,	S,	SSH,	

UV,	sea	ice

Daily analysis 
and 10 days 

forecast	for	T,	S,	
SSH,	UV,	sea	ice

Daily analysis 
and 10 days 

forecast	for	T,	S,	
SSH,	UV,	sea	ice

Daily analysis 
and 6 days 

forecast	for	T,	S,	
SSH,	MLD,	UV

Analysis and 10 
days forecast 

for	T,	S,	SSH,	UV,	
MLD,	fluxes,	sea	

icea

Real time 
monitoring and 
prediction,	re-
analysis	of:	T,	S,	
UV,	SSH,	sea	ice	
concentration,	

tropical cyclone 
heat potential 

(TCHP)
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WebsiteProductsData used for 
assimilation 

and assessment

Downscaling/
nesting

Circulation 
model

ResolutionAreaSystemScale

https://
marine.
copernicus.eu

https://
marine.
copernicus.eu

https://
marine.
copernicus.eu

R

R

R

R

Irish-Biscay-Ibe-
rian shelves MFC 

by Copernicus 
Marine Service 

(Mercator Ocean 
International,	
France	/	Spain)

North-West shelf 
MFC by Coper-
nicus Marine 
Service (Met 
Office,	UK)

Black Sea MFC 
by Copernicus 
Marine Service 
(CMCC,	Italy)

High Resolution 
Data Assimila-
tive Model for 

Coastal and Shelf 
Seas around 

China (Institute 
of Atmospheric 
Physics/Chinese 
Academy of Sci-
ences,	China)

Irish-Bis-
cay-Iberian 

shelves

European 
North-West 
shelf Seas

Black Sea

Northwest 
Pacific,	

coastal seas 
around 
China

1/36° in hori-
zontal and 50 
vertical levels

1.5 km in 
horizontal 

and 51 hybrid 
s-sigma ter-

rain-following 
coordinates 

on the vertical

1/40° in hori-
zontal and 121 
vertical levels

NEMO

NEMO

NEMO

SEEK	scheme,	
using	INS,	SL,	

SST obs.

NEMOVAR 
(3D-Var	scheme)	
using	INS,	SL,	

SST obs.

OceanVar 
(3D-Var	scheme)	
using	INS,	SL,	

SST obs.

Assessment: 
SST,	SLA,	tem-
perature,	buoys,	

ship cruises

1-way nested 
into GLO-MFC 
Copernicus 

Marine Service 
(1/12°,	50	ver-
tical	levels)

1-way nested 
into	Met	Office	

FOAM NATL 
(1/12°; 6 hourly 
fields)	and

Baltic Sea 
physics by 
Copernicus 

Marine Service 
(2	km,	1	hourly	

fields)

Lateral open 
boundary con-

ditions from 
the Unstruc-
tured Turkish 
Straits System 
(U-TSS,	Ilicak	
et	al.	2021)

2-way nesting

Analysis and 5 
days forecast 

for	T,	S,	SSH,	UV,	
MLD

Analysis and 5 
days forecast 

for	T,	S,	SSH,	UV,	
MLD

Analysis and 10 
days forecast 

for	T,	S,	SSH,	UV,	
MLD

Daily averaged 
3-D	fields	of	

UV,	T,	S
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WebsiteProductsData used for 
assimilation 

and assessment

Downscaling/
nesting

Circulation 
model

ResolutionAreaSystemScale

MARC: http://
marc.ifremer.
fr

ILICO: https://
www.ir-ilico.
fr/en

http://ocim-
stest.ocean.
gov.za/aloga_
bay_model

http://
omgsrv1.
meas.ncsu.
edu:8080/
CNAPS/

https://www. 
marinha.mil. 
br/chm/
dados 
-do-smm- 
modelagem- 
numerica-te-
la-de-chama-
da/modela-
gem-numerica

R/C

R/C

R/C

R/C

MARC: Modelling 
and Analyses for 
Coastal Research 

and ILICO: 
Coastal Ocean 
and Nearshore 

Observation 
Research 

Infrastructure 
(Ifremer,	France)

SOMISANA (SAE-
ON/DFFE,	South	

Africa)

CNAPS Coupled 
Northwest At-

lantic Prediction 
System (North 
Carolina State 
University,	USA)

REMO Oceano-
graphic Modeling 

and Observa-
tion Network 

(Brazilian Navy 
Hydrographic 
Center,	Brazil)

Bay of Bis-
cay / English 

Channel / 
Northwest-

ern Mediter-
ranean Sea

Algoa	Bay,	
south	coast,	
South Africa

Northwest 
Atlantic 

coast	ocean,	
including 
the entire 
east coast 
of	U.S.,	

the Gulf of 
Mexico and 
Caribbean 

seas

Region 
between 
latitudes 

35.5°S and 
7°N and 

longitude 
20°W to the 

Brazilian 
coast

2.5 km hor-
izontal resolu-

tion and 40 
levels

Horizontal 
grid that 

decreases 
from ~3km at 
the edges to 
500 m within 

the bay

Horizontal 
resolution	<	

7 km

2	grids,	at	
1/12° and 

1/24° horizon-
tal resolu-
tions for 

the	eastern,	
southeastern 
and southern 

regions

MARS3D

CROCO

ROMS

HYCOM

SST,	HF	Radar	
(sea state + cur-
rents),	Moored	
buoys	(T,S)

No DA. Assess-
ment is based 
on Underwater 
Temperature 
Recorder	(UTR)	
and ADCP data

HF	Radar,	buoy,	
ship,	satellite	
observations

The system 
assimilates 

vertical	profiles	
of temperature 
(T)	and	salinity	
(S)	from	the	
ARGO	system,	
XBTs,	CTDs,	Sea	
Level	Anomaly,	

SST; assessment 
using	AVISO	SL,	

SST,	INS

Spectral 
nudging,	one-
way nesting 

using GLO-MFC 
products and 
2D models for 

tides

1-way nested 
into	GLO-PHY	
(1/12°,	50	ver-
tical	levels)

1-way nesting 
with Mercator 
Ocean GLO-
PHY;	Global	

HyCOM; WWIII

TPXO	7.1	for	
tides; one-way 
nesting from 

the 1/12° 
resolution to 

the 1/24° reso-
lution grid

1 hr output in 
Bay	of	Biscay,	
3 hr output in 
Mediterranean 
Sea,	HF	observa-
tions	(20min)

SSH,	3D	T,	S	and	
UV,	trajectories	
from hypotheti-

cal oil spills

Daily nowcast 
and 3-day fore-
cast	for	UV,	T,	
S,	ocean	waves	

and atmospheric 
variables

4-day forecasts 
(T,	UV	and	

SSH)	at	6-hour	
intervals updat-

ed daily on 2 
different grids
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WebsiteProductsData used for 
assimilation 

and assessment

Downscaling/
nesting

Circulation 
model

ResolutionAreaSystemScale

https://www.
bsh.de/EN/
DATA/Predic-
tions/predic-
tions_node.
html

http://codm.
hzg.de/codm

https://
dreams-c1.
riam.ky-
ushu-u.ac.jp/
vwp

R/C

R 
to L

R 
to L

DREAMS: Data 
assimilation 

Research of the 
East Asian Marine 
System	(RIAM,	

Kyushu Universi-
ty,	Japan)

BSH Operational 
Model System 
(BSH,	Germany)

COSYNA

Northwest-
ern	Pacific	
with focus 

on marginal 
seas

North and 
Baltic	Sea,	

German 
coastal 
waters

North	Sea,	
German 
Bight,	

German 
Wadden Sea

DREAMS_mar-
ginal seas 
model at 

~7.4km hor-
izontal resolu-
tion. Coastal 

models at 
~1.5km along 
the	Japan	Sea	
coast nested 
in DREAMS_

marginal seas 
model

Horizontal 
resolution is 
3 km for the 
North and 

Baltic	Sea,	0.5	
km for Ger-
man coastal 

waters

3 nested mod-
els:	i)	North	

Sea Baltic Sea 
model	(5	km),	
ii)	German	

Bight model 
(1	km,	varying	

unstruc-
tured-grid,	

1km),	iii)	Estu-
arine model 

(varying 
unstruc-
tured-grid,	
20-200	m)

RIAM

HBM

GETM

Assessment: 
Volume trans-
port through 
the Tsushima 

Strait,	U,	V	and	T	
measurements 

by	fishing	
vessels

Assimilation 
with PDAF 

scheme using 
AVHRR SST/

Sentinel-3 SST 
and validation 
using Coper-
nicus Marine 
Service data

Assessment 
with indepen-

dent ADCP 
observations,	
FerryBox	data,	

dedicated 
profile	mea-
surements,	in-
tercomparison 
with products 

from other 
operational 

systems

OBC from 
climatological 

run

2-way nesting 
among region-
al and coastal 

models

MyOcean 
ECOOP,	OSTIA,	
MERIS color 

data

Downscaling 
using 3 differ-

ent grids

T,	S,	U,	V,	sea	lev-
el,	mixed	layer	
depth,	density

120-hour 
forecast from 0 

and 12 UTC and a 
78-hour forecast 

from 6 and 
18 UTC; water 
level,	T,	S,	UV,	

ice products and 
biogeochemical 

variables

Surface	UV,	T,	S,	
suspended mat-
ter,	wind	wave	
characteristics 
in the German 

Bight
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WebsiteProductsData used for 
assimilation 

and assessment

Downscaling/
nesting

Circulation 
model

ResolutionAreaSystemScale

http://sanifs.
cmcc.it

http://
opendap.
puertos.es/
thredds/
catalog.html 
; http://www.
puertos.
es/es-es/
proyectos/
Paginas/SA-
MOA.aspx

http://fore-
cast.maretec.
org

C

C

C/L

PCOMS: Portu-
guese Coastal 
Operational 

Modelling Sys-
tem	(MARETEC,	

Portugal)

SANIFS	(CMCC,	
Italy)

SAMOA (Puertos 
del	Estado,	
Spain)

Western 
Iberia region 
and subre-

gions

Southern 
Adriatic 

Northern Io-
nian coastal 
Forecasting 

System

Regional 
areas at ~ 2 
km resolu-
tion; model 
applications 

consist of 
2 nested 

regular grids 
with spatial 
resolution 
of ~350 m 
and ~70 

m for the 
coastal and 

harbour 
domains

5.6 km in hor-
izontal and 50 
vertical layers

Horizontal 
resolution 

from 3 km in 
open-sea to 
100-20 m in 

coastal areas

Regional 
areas at ~ 2 

km resolution; 
model 

applications 
consist of 2 

nested regular 
grids with 

spatial reso-
lution of ~350 
m and ~70 m 

for the coastal 
and harbour 

domains

MOHID 3D

SHYFEM

ROMS

N/A

No DA. Assess-
ment using 

available ob-
servations from 

Copernicus 
Marine	Service,	
EMODnet and 
national ob-

serving network

No DA. Assess-
ment using 
in-situ obs. 

from mooring 
buoys,	ADCPs,	

tide gauges and 
drifter buoys; 
SST satellite 

data and 
surface currents 

from HF radar

1-way nesting 
into Merca-
tor-Ocean 

PSY2V4	in	the	
North Atlantic; 

tidal levels 
computed by a 
2D version of 
MOHID,	forced	
by	FES2004,	
running on a 
wider region.

Climatological 
profiles	from	
WOA09 for 
nutrients.

1-way nesting 
using the 

Copernicus 
Marine Service 
Mediterranean 
MFC regional 

forecast 
products (at 

1/24°)

1-way nesting 
using the 

IBI-MFC Re-
gional Forecast 

products (at 
1/36°)

Hindcasts and 
3-day forecasts 
of SSH and 3D 
UV,	T,	S	and	

biogeochemical 
model

Short term fore-
cast	(3	days)	of	
SSH,	3D	UV,	T,	S

Daily operation-
al short-term 
(+72h)	met-

ocean forecast
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WebsiteProductsData used for 
assimilation 

and assessment

Downscaling/
nesting

Circulation 
model

ResolutionAreaSystemScale

https://hud-
son.dl.ste-
vens-tech.
edu/mari-
timeforecast/
index.shtml

https://
savannah.
cmcc.it

http://
forecast.
maretec.org/
tagusmouth

C/L

C/L

L

NYHOPS:	New	
York	Harbor	
Observation 

and Prediction 
System	(Jupiter	
Intelligence,	USA)

SWITCH – Georgia 
Coasts (CMCC / 

GeorgiaTech,	Italy	
/	USA)

Tagus Mouth op-
erational model 
(MARETEC	/	IST,	

Portugal)

New	York	
and East 

Coast of US

Georgia 
coast,	US

Tagus 
Estuary 

and Mouth 
region

7.5 km at the 
open ocean 
boundary to 

less than 50 m

1km in open 
ocean to 
100m in 

coastal areas 
to 10m in the 

rivers

Variable 
horizontal 
resolution,	

ranging from 
2 km off the 
coast up to 

400 m inside 
the	estuary,	
50 layers in 
the vertical

POM

SHYFEM

MOHID 3D

N/A

No	DA,	assess-
ment is based 
on tide gauges 

at coast and 
along rivers

No DA. Assess-
ment: Argo and 
buoys data from 

IBI-ROOS and 
the Portuguese 

hydrograph-
ic	institute,	

satellite images 
(ODYSSEA,	

Ocean Colour 
and	HF	radar)

Offshore 
boundary 

tides,	surges,	
waves. Real 

time data from 
Ntl Ocean 

Service,	Adv.	
Hydrologic 
Prediction 
Service,	Ntl.	

Climatic Data 
Center.

1-way nested 
into	GLO-PHY	
(1/12°,	50	ver-
tical	levels)

1-way nesting 
using the 

PCOMS

72	hr	forecasts,	
nowcasts,	24	hr	
hindcasts initi-

ated every 6 hrs; 
Variables:	SSH,	
T,	S,	UV,	winds,	
coastal waves - 
height,	period	
and	direction,	

biogeochemical 
variables

3-days forecast 
for	SSH,	3D	UV,	

T,	S

Hindcasts and 
3-day forecasts 
of SSH and 3D 
UV,	T,	S	and	

biogeochemical 
model
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Table 5.3. Initial	inventory	of	global	(G)	to	regional	(R)	to	coastal	(C)	to	local	(L)	multi-year	systems.

WebsiteTimeseriesData 
Assimilation 

scheme

Downscaling/
nesting

Circulation 
model

ResolutionAreaSystemScale

https://
rda.ucar.
edu/#!lfd?n-
b=y&b=pro-
j&v=NCEP%20
Climate%20
Forecast%20
System%20
Reanalysis

http://c-glors.
cmcc.it/
index/index.
html

www.ec-
co-group.org

http://
www.gfdl.
noaa.gov/
ocean-da-
ta-assimila-
tion

https://www.
metoffice.gov.
uk/research/

www.ec-
co-group.org

G

G

G

G

G

G

CFSR by the Cli-
mate Prediction 

Center

C-GLORS by the 
Euro-Mediterra-
nean Center on 
Climate Change 

Foundation

ECCO	by	JPL-NASA

ECDA by the 
Geophysical 

Fluid Dynamics 
Laboratory

GloSea5 (UK 
MetOffice,	UK)

GECCO by Univer-
sity of Hamburg

Global 
Ocean

Global 
Ocean

Global 
Ocean

Global 
Ocean

Global 
Ocean

Global 
Ocean

~ 38 km hor-
izontal resolu-

tion and 64 
vertical levels

1/4° horizon-
tal resolution 
and 50 to 75 

levels

The horizontal 
resolution 

varies spatial-
ly from 22 km 

to 110 km

1° horizontal 
resolution 

and 50 verti-
cal levels

1/4° horizon-
tal resolution 
and 75 levels

MOM4

NEMO

MitGCM

MOM4

NEMO

MitGCM

3D-Var scheme 
for the assim-
ilation	of	SST,	
INS,	SICE	obs.

OceanVar 
(3D-Var	scheme)	
using	INS,	SLA,	
SST and SICE 

obs.

4D-Var scheme 
for the assim-
ilation	of	SLA,	
SST and INS 

obs.

EnKF scheme 
using	INS,	SST	
and SLA obs.

3D-Var scheme 
using	SLA,	SST,	

INS and SICE obs.

4D-Var scheme 
for the assim-
ilation	of	SLA,	
SST and INS 

obs.

N/A

N/A

N/A

N/A

N/A

N/A

1979-2010

1990-2016

1992-2017

Integration for 
the 20th Century

1993-2015

1948-2018
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WebsiteTimeseriesData 
Assimilation 

scheme

Downscaling/
nesting

Circulation 
model

ResolutionAreaSystemScale

http://www.
godac.jam-
stec.go.jp/
estoc/e/

https://www.
cawcr.gov.
au/

https://www.
ecmwf.int/
en/research/
climate-re-
analysis/
ocean-re-
analysis

https://clima-
tedataguide.
ucar.edu/
climate-data/
soda-sim-
ple-ocean-da-
ta-assimila-
tion

https://www.
mri-jma.
go.jp/

https://
marine.
copernicus.eu

https://
marine.
copernicus.eu

G

G

G

G

G

G

R

K7-ODA	(Japan	
Agency for 

Marine-Earth 
Science and 
Technology)

PEODAS (Centre 
for Australian 
Weather and 

Climate Research 
- Bureau of 
Meteorology)

ORAS5	(ECMWF,	
UK)

SODA (National 
Center for Atmo-
spheric Research 

Staff,	US)

MOVE-C	RA	(Ja-
pan Meteorologi-

cal	Agency)

Global Ocean 
MFC by Coper-
nicus Marine 
Service	(MOI,	

France)

Arctic MFC by Co-
pernicus Marine 
Service	(NERSC,	

Norway)

Global 
Ocean

Global 
Ocean

Global 
Ocean

Global 
Ocean

Global 
Ocean

Global 
Ocean

Arctic 
Region

1° horizontal 
resolution 

and 45 levels

1° x 2° 
horizontal 
resolution

1° horizontal 
resolution

1/4° horizon-
tal resolution

1° horizontal 
resolution

1/12° horizon-
tal	resolution,	

50 vertical 
levels

12.5 km 
horizontal 
resolution 

and 12 levels

MOM3

MOM2

NEMO

POP2.1

MRI.COM2

NEMO

HYCOM

4D-Var adjont 
method for the 
assimilation of 
INS,	SLA,	SST	

obs.

EnKF for the 
assimilation 

of INS and SST 
obs.

3D-Var scheme 
using	SLA,	INS	
and SST obs.

OI for INS and 
SST obs.

3D-Var scheme 
using	SLA,	INS	
and SST obs.

Reduced-order 
Kalman	filter	

for assimilating 
SLA,	SST,	INS	
and SICE obs.

DEnKF for 
assimilating 
satellite and 

INS obs.

N/A

N/A

N/A

N/A

N/A

N/A

N/A

1957-2009

2000-2010

1979-present

1869-2010

1950-2011

1993-2019

1991-2019
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WebsiteTimeseriesData 
Assimilation 

scheme

Downscaling/
nesting

Circulation 
model

ResolutionAreaSystemScale

https://
marine.
copernicus.eu

https://
marine.
copernicus.eu

https://
marine.
copernicus.eu

https://
marine.
copernicus.eu

https://
marine.
copernicus.eu

R

R

R

R

R

Baltic MFC by 
Copernicus 

Marine 
Service	(SHMI,	

Sweden)

North-West 
shelf MFC by 
Copernicus 

Marine 
Service (Met 
Office,	UK)

Irish-Bis-
cay-Iberian 
shelves MFC 

by Copernicus 
Marine Ser-

vice (Puertos 
del	Estado,	
Spain)

Mediterra-
nean Sea MFC 
by Copernicus 

Marine Ser-
vice	(CMCC,	

Italy)

Black Sea MFC 
by Copernicus 

Marine Ser-
vice	(CMCC,	

Italy)

Baltic Sea

North 
West 
Shelf 
Seas

Irish-Bis-
cay-Ibe-

rian 
shelves

Mediter-
ranean 

Sea

Black Sea

0.05556 
degrees x 

0.03333 de-
grees horizon-
tal resolution 
and 56 verti-

cal levels

7 km horizon-
tal resolution 
and 24 verti-

cal levels

1/12° horizon-
tal resolution

1/24° in hori-
zontal and 141 
vertical levels

3 km horizon-
tal resolution 
and 31 vertical 

levels

NEMO

NEMO

NEMO

NEMO

NEMO

LSEIK data 
assimilation 

scheme

NEMOVAR 
(3D-Var	scheme)	

using SST and 
INS obs.

SEEK	scheme,	
using	INS,	SL,	

SST obs.

OceanVar 
(3D-Var	scheme)	
using	INS,	SLA,	

SST obs.

OceanVar 
(3D-Var	scheme)	
using	INS,	SLA,	

SST obs.

At the lateral boundaries 
in the western English 
Channel and along the 

Scotland-Norway	boundary,

the sea levels are pre-
scribed using a coarse (24 
nautical	miles	resolution)	
storm-surge model called

NOAMOD (North Atlantic 
Model).	Climatological	

monthly mean values of 
salinity and temperature

are	used	at	the	boundary,	
and it is assumed there is 

no sea ice

1-way nested into the Glob-
al Ocean MFC and Baltic 
MFC reanalysis products

1-way nested into the Glob-
al Ocean MFC reanalysis 

product at 1/4° horizontal 
resolution

1-way nested into C-GLORS

N/A

1993-2019

1993-2019

1993-2019

1993-2019

1993-2019

CHAPTER 5. CIRCULATION MODELLING 116



Balmaseda,	M.	A.,	Mogensen,	K.,	and	Weaver,	A.T.	(2013).	Evaluation	of	the	ECMWF	ocean	reanalysis	
system	ORAS4.	 Quarterly	 Journal	 of	 the	 Royal	Meteorological	 Society,	 139,	 1132-1161,	https://doi.
org/10.1002/qj.2063 

Balmaseda,	M.A.,	Hernandez,	 F.,	 	 Storto	 ,	 A.,	 Palmer,	M.D.,	 Alves,	O.,	 Shi,	 L.,	 Smith,	G.C.	 Toyoda,	 T.,	
Valdivieso,	M.,	Barnier,	B.,	Behringer,	D.,	Boyer,	 T.,	Chang,	Y-S.,	Chepurin,	G.A.,	 Ferry,	N.,	 Forget,	G.,	
Fujii,	Y.,	Good,	S.,	Guinehut,	S.,	Haines,	K.,	Ishikawa,	Y.,	Keeley,	S.,	Köhl,	A.,	Lee,	T.,	Martin,	M.J,	Masina,	
S.,	Masuda,	S.,	Meyssignac,	B.,	Mogensen,	K.,	Parent,	L.,	Peterson,	K.A.,	Tang,	Y.M.,	Yin,	Y.,	Vernieres,	
G.,	Wang,	X.,	Waters,	J.,	Wedd,	R.,	Wang,	O.,	Xue,	Y.,	Chevallier,	M.,	Lemieux,	J.F.,	Dupont,	F.,	Kuragano,	
T.,	Kamachi,	M.,	Awaji,	T.,	Caltabiano,	A.,	Wilmer-Becker,	K.,	Gaillard,	F.	(2015).	The	Ocean	Reanalyses	
Intercomparison	Project	(ORA-IP).	 Journal	of	Operational	Oceanography,	8(sup1),	s80-s97,	https://
doi.org/10.1080/1755876X.2015.1022329  

Barth,	A.,	Alvera-Azcárate,	A.,	Beckers,	J.M.,	Weisberg,	R.	H.,	Vandenbulcke,	L.,	Lenartz,	F.,	and	Rixen,	
M.	(2009).	Dynamically	constrained	ensemble	perturbations–application	to	tides	on	the	West	Flori-
da	Shelf.	Ocean	Science,	5,	259-270,	https://doi.org/10.5194/os-5-259-2009 

Bell,	M.,	Schiller,	A.,	Le	Traon,	P-Y.,	Smith,	N.R.,	Dombrowsky,	E.,	Wilmer-Becker,	K.	(2015).	An	intro-
duction	to	GODAE	OceanView.	Journal	of	Operational	Oceanography,	8,	2-11,	https://doi.org/10.1080
/1755876X.2015.1022041 

Bennett,	A.F.	(1992).	Inverse	Methods	in	Physical	Oceanography,	Cambridge	University	Press,	Cam-
bridge,	UK.

Berner,	J.,	G.	Shutts,	M.	Leutbecher,	and	T.	Palmer.	(2009).	A	spectral	stochastic	kinetic	energy	back-
scatter scheme and its impact on flow-dependent predictability in the ECMWF ensemble prediction 
system.	Journal	of	the	Atmospheric	Sciences,	66,	603-626,	https://doi.org/10.1175/2008JAS2677.1  

Bessières,	L.,	Leroux,	S.,	Brankart,	 J.M.,	Molines,	 J.M.,	Moine,	M.P.,	Bouttier,	P.A.,	Penduff,	T.,	Terray,	
L.,	 Barnier,	 B.,	 Sérazin,	 G.	 (2017).	 Development	 of	 a	 probabilistic	 ocean	modelling	 system	 based	
on	NEMO	3.5:	Application	at	eddying	 resolution.	Geoscientific	Model	Development,	 10,	 1091-1106,	
https://doi.org/10.5194/gmd-10-1091-2017 

Bjerknes,	V.	(1914).	Meteorology	as	an	exact	science.	Monthly	Weather	Review,	42(1),	11-14,	https://
doi.org/10.1175/1520-0493(1914)42<11:MAAES>2.0.CO;2 

Blayo,	E.,	and	Debreu,	L.	(1999).	Adaptive	mesh	refinement	for	finite-difference	ocean	models:	first	
experiments.	Journal	of	Physical	Oceanography,	29(6),	1239-1250,	https://doi.org/10.1175/1520-0485
(1999)029<1239:AMRFFD>2.0.CO;2

Blayo,	E.,	and	Debreu,	L.	(2005).	Revisiting	open	boundary	conditions	from	the	point	of	view	of	char-
acteristic	variables.	Ocean	Modelling,	9(3),	231-252,	https://doi.org/10.1016/j.ocemod.2004.07.001 

Bouttier,	F.,	and	Courtier,	P.	(2002).	Data	assimilation	concepts	and	methods,	March	1999.	ECMWF	Education	
material,	59	pp.,	https://www.ecmwf.int/en/elibrary/16928-data-assimilation-concepts-and-methods 

5.10.  
References

CHAPTER 5. CIRCULATION MODELLING 117

https://doi.org/10.1002/qj.2063
https://doi.org/10.1002/qj.2063
https://doi.org/10.1080/1755876X.2015.1022329
https://doi.org/10.1080/1755876X.2015.1022329
https://doi.org/10.5194/os-5-259-2009
https://doi.org/10.1080/1755876X.2015.1022041
https://doi.org/10.1080/1755876X.2015.1022041
https://doi.org/10.1175/2008JAS2677.1
https://doi.org/10.5194/gmd-10-1091-2017
https://doi.org/10.1175/1520-0493(1914)42<11:MAAES>2.0.CO;2
https://doi.org/10.1175/1520-0493(1914)42<11:MAAES>2.0.CO;2
https://doi.org/10.1175/1520-0485(1999)029<1239:AMRFFD>2.0.CO;2
https://doi.org/10.1175/1520-0485(1999)029<1239:AMRFFD>2.0.CO;2
https://doi.org/10.1016/j.ocemod.2004.07.001
https://www.ecmwf.int/en/elibrary/16928-data-assimilation-concepts-and-methods


Brankart,	J.-M.,	(2013).	Impact	of	uncertainties	in	the	horizontal	density	gradient	upon	low	resolution	
global	ocean	modelling.	Ocean	Modelling,	66,	64-76,	http://dx.doi.org/10.1016/j.ocemod.2013.02.004 

Brankart,	 J.-M.,	Candille,	G.,	Garnier,	 F.,	 Calone,	C.,	Melet,	A.,	Bouttier,	P.-A.,	Brasseur,	P.,	 Verron,	 J.,	
(2015).	A	generic	approach	to	explicit	simulation	of	uncertainty	in	the	NEMO	ocean	model.	Geosci-
entific	Model	Development,	8,	1285-1297,	https://doi.org/10.5194/gmd-8-1285-2015 

Brassington,	G.B.,	Warren,	G.,	Smith,	N.,	Schiller,	A.,	Oke,	P.R.	 (2005).	BLUElink>	Progress	on	opera-
tional ocean prediction for Australia. Bulletin of the Australian Meteorological and Oceanographic 
Society,	Vol.18	p.	104.

Buizza,	 R.,	Miller,	M.,	 Palmer,	 T.N.	 (1999).	 Stochastic	 representation	of	model	 uncertainties	 in	 the	
ECMWF	 ensemble	 prediction	 system.	 Quarterly	 Journal	 of	 the	 Royal	 Meteorological	 Society,	 125,	
2887-2908,	http://dx.doi.org/10.1002/qj.49712556006 

Candille,	G.,	and	Talagrand,	O.	(2005).	Evaluation	of	probabilistic	prediction	systems	for	a	scalar	variable.	
Quarterly	Journal	of	the	Royal	Meteorological	Society,	131,	2131-2150,	https://doi.org/10.1256/qj.04.71 

Charria,	G.,	Lamouroux,	J.,	De	Mey,	P.	(2016).	Optimizing	observational	networks	combining	gliders,	
moored	buoys	 and	 FerryBox	 in	 the	Bay	 of	 Biscay	 and	 English	 Channel.	 J.	Mar.	 Syst.,	 162,	 112-125.	
http://dx.doi.org/10.1016/j.jmarsys.2016.04.003 

Chassignet,	E.	P.,	Hurlburt,	H.	E.,	Smedstad,	O.	M.,	Halliwell,	G.	R.,	Hogan,	P.	 J.,	Wallcraft,	A.	 J.,	and	
Bleck,	 R.	 (2006).	 Ocean	 prediction	 with	 the	 hybrid	 coordinate	 ocean	model	 (HYCOM).	 In	 “Ocean	
weather	forecasting”,	413-426,	Springer,	Dordrecht,	doi:10.1007/1-4020-4028-8_16	

Chelton,	D.	B.,	DeSzoeke,	R.	A.,	Schlax,	M.	G.,	El	Naggar,	K.,	and	Siwertz,	N.	(1998).	Geographical	vari-
ability	of	the	first	baroclinic	Rossby	radius	of	deformation.	Journal	of	Physical	Oceanography,	28(3),	
433-460,	https://doi.org/10.1175/1520-0485(1998)028<0433:GVOTFB>2.0.CO;2 

Cheng,	S.,	Aydoğdu,	A.,	Rampal,	P.,	Carrassi,	A.,	Bertino,	L.	(2020).	Probabilistic	Forecasts	of	Sea	Ice	
Trajectories	in	the	Arctic:	Impact	of	Uncertainties	in	Surface	Wind	and	Ice	Cohesion.	Oceans,	1,	326-
342,	https://doi.org/10.3390/oceans1040022 

Ciavatta,	 S.,	 Torres,	 R.,	 Martinez-Vicente,	 V.,	 Smyth,	 T.,	 Dall'Olmo,	 G.,	 Polimene,	 L.,	 and	 Allen,	 J.	 I.	
(2014).	 Assimilation	 of	 remotely-sensed	 optical	 properties	 to	 improve	 marine	 biogeochemistry	
modelling.	Progresses	in	Oceanography,	127,	74-95,	https://doi.org/10.1016/j.pocean.2014.06.002 

Crosnier,	L.,	and	Le	Provost,	C.	(2007).	Inter-comparing	five	forecast	operational	systems	in	the	North	
Atlantic	and	Mediterranean	basins:	The	MERSEA-strand1	Methodology.	Journal	of	Marine	Systems,	
65(1-4),	354-375,	https://doi.org/10.1016/j.jmarsys.2005.01.003 

Cummings,	J.	A.	(2005).	Operational	multivariate	ocean	data	assimilation.	Quarterly	Journal	of	the	
Royal	Meteorological	Society,	131(613),	3583-3604,	https://doi.org/10.1256/qj.05.105 

Cummings,	 J.A.,	and	Smedstad,	O.M.	 (2013).	Variational	data	analysis	 for	the	global	ocean.	 In:	S.K.	
Park	and	L.	Xu	(Eds.),	Data	Assimilation	for	Atmospheric,	Oceanic	and	Hydrologic	Applications	Vol.	
II.,	doi:10.1007/978-3-642-35088-7_13,	Springer-Verlag	Berlin	Heidelberg.

Daley,	R.	(1991).	Atmospheric	Data	Analysis.	Cambridge	University	Press.	457	pp.

Danilov,	S.,	Kivman,	G.,	and	Schröter,	J.	(2004).	A	finite-element	ocean	model:	principles	and	evalua-
tion.	Ocean	Modelling,	6(2),	125-150,	https://doi.org/10.1016/S1463-5003(02)00063-X 

CHAPTER 5. CIRCULATION MODELLING 118

http://dx.doi.org/10.1016/j.ocemod.2013.02.004
https://doi.org/10.5194/gmd-8-1285-2015
http://dx.doi.org/10.1002/qj.49712556006
https://doi.org/10.1256/qj.04.71
http://dx.doi.org/10.1016/j.jmarsys.2016.04.003
https://doi.org/10.1175/1520-0485(1998)028<0433:GVOTFB>2.0.CO;2
https://doi.org/10.3390/oceans1040022
https://doi.org/10.1016/j.pocean.2014.06.002
https://doi.org/10.1016/j.jmarsys.2005.01.003
https://doi.org/10.1256/qj.05.105
https://doi.org/10.1016/S1463-5003(02)00063-X


Debreu,	 L.,	 Marchesiello,	 P.,	 Penven,	 P.,	 and	 Cambon,	 G.	 (2012).	 Two-way	 nesting	 in	 split-explicit	
ocean	models:	Algorithms,	 implementation	and	validation.	Ocean	Modelling,	49,	1-21,	https://doi.
org/10.1016/j.ocemod.2012.03.003 

Debreu,	L.,	Vouland,	C.,	and	Blayo,	E.	(2008).	AGRIF:	Adaptive	grid	refinement	in	Fortran.	Computers	
&	Geosciences,	34(1),	8-13,	https://doi.org/10.1016/j.cageo.2007.01.009 

De	Mey-Frémaux	and	 the	Groupe	MERCATOR	Assimilation	 (1998).	Scientific	 Feasibility	of	Data	As-
similation	in	the	MERCATOR	Project.	Technical	Report,	doi:	https://doi.org/10.5281/zenodo.3677206 

De	Mey	P.,	Craig	P.,	Kindle	 J.,	 Ishikawa	Y.,	Proctor	R.,	Thompson	K.,	Zhu	 J.,	and	contributors	 (2007).	
Towards the assessment and demonstration of the value of GODAE results for coastal and shelf seas 
and	forecasting	systems,	2nd	ed.	GODAE	White	Paper,	GODAE	Coastal	and	Shelf	Seas	Working	Group	
(CSSWG),	79	pp.	Available	online	at:	http://www.godae.org/CSSWG.html 

De	Mey-Frémaux,	P.,	Ayoub,	N.,	Barth,	A.,	Brewin,	R.,	Charria,	G.,	Campuzano,	F.,	Ciavatta,	S.,	Cirano,	
M.,	 Edwards,	C.A.,	 Federico,	 I.,	Gao,	S.,	Garcia-Hermosa,	 I.,	Garcia-Sotillo,	M.,	Hewitt,	H.,	Hole,	 L.R.,	
Holt,	J.,	King,	R.,	Kourafalou,	V.,	Lu,	Y.,	Mourre,	B.,	Pascual,	A.,	Staneva,	J.,	Stanev,	E.V.,	Wang,	H.	and	
Zhu	X.	(2019).	Model-Observations	Synergy	in	the	Coastal	Ocean.	Frontiers	in	Marine	Science,	6:436,	
https://doi.org/10.3389/fmars.2019.00436  

Desroziers,	G.,	Berre,	L.,	Chapnik,	B.,	Poli,	P.	(2005).	Diagnosis	of	observation,	background	and	analy-
sis-error	statistics	in	observation	space.	Quarterly	Journal	of	the	Royal	Meteorological	Society,	131,	
3385-3396,	http://dx.doi.org/10.1256/qj.05.108 

Dyke,	P.	(2016).	Modelling	Coastal	and	Marine	Processes.	2nd	Edition,	Imperial	College	Press,	https://
doi.org/10.1142/p1028 

Ebert,	E.	E.	(2009).	Neighborhood	verification	-	a	strategy	for	rewarding	close	forecasts.	Weather	and	
Forecasting,	24(6),	1498-1510,	https://doi.org/10.1175/2009WAF2222251.1 

Evensen,	G.	(2003).	The	ensemble	Kalman	filter:	Theoretical	formulation	and	practical	implementa-
tion.	Ocean	dynamics,	53,	343-367,	https://doi.org/10.1007/s10236-003-0036-9 

Fox-Kemper,	B.,	Adcroft,	A.,	Böning,	C.W.,	Chassignet,	E.P.,	Curchitser,	E.,	Danabasoglu,	G.,	Eden,	C.,	
England,	 M.H.,	 Gerdes,	 R.,	 Greatbatch,	 R.J.,	 Griffies,	 S.M.,	 Hallberg,	 R.W.,	 Hanert,	 E.,	 Heimbach,	 P.,	
Hewitt,	 H.T.,	 Hill,	 C.N.,	 Komuro,	 Y.,	 Legg,	 S.,	 Le	 Sommer,	 J.,	 Masina,	 S.,	 Marsland,	 S.J.,	 Penny,	 S.G.,	
Qiao,	 F.,	 Ringler,	 T.D.,	 Treguier,	 A.M.,	 Tsujino,	H.,	Uotila,	 P.,	 and	Yeager,	 S.G.	 (2019).	 Challenges	and	
Prospects	 in	Ocean	Circulation	Models.	Frontiers	 in	Marine	Science,	6:65,	https://doi.org/10.3389/
fmars.2019.00065 

Gerya,	T.	(2019).	Introduction	to	Numerical	Geodynamic	Modelling.	2nd	edition,	Cambridge	Universi-
ty	Press,	https://doi.org/10.1017/9781316534243 

Ghantous,	M.,	Ayoub,	N.,	De	Mey-Frémaux,	P.,	Vervatis,	V.,	Marsaleix,	P.	(2020).	Ensemble	downscaling	
of	a	regional	ocean	model.	Ocean	Modelling,	145,	http://dx.doi.org/10.1016/j.ocemod.2019.101511 

Ghil,	M.,	and	Melanotte-Rizzoli,	P.	(1991).	Data	Assimilation	in	Meteorology	and	Oceanography.	Ad-
vances	in	Geophysics,	33,	141-266,	https://doi.org/10.1016/S0065-2687(08)60442-2 

Greenberg,	D.A.,	Dupont,	F.,	Lyard,	F.,	Lynch,	D.,	Werner,	F.	(2007).	Resolution	issues	in	numerical	mod-
els	of	oceanic	and	coastal	circulation.	Continental	Shelf.	Research,	27(9),	https://doi.org/10.1016/j.
csr.2007.01.023 

CHAPTER 5. CIRCULATION MODELLING 119

https://doi.org/10.1016/j.ocemod.2012.03.003
https://doi.org/10.1016/j.ocemod.2012.03.003
https://doi.org/10.1016/j.cageo.2007.01.009
https://doi.org/10.5281/zenodo.3677206
http://www.godae.org/CSSWG.html
https://doi.org/10.3389/fmars.2019.00436
http://dx.doi.org/10.1256/qj.05.108
https://doi.org/10.1142/p1028
https://doi.org/10.1142/p1028
https://doi.org/10.1175/2009WAF2222251.1
https://doi.org/10.1007/s10236-003-0036-9
https://doi.org/10.3389/fmars.2019.00065
https://doi.org/10.3389/fmars.2019.00065
https://doi.org/10.1017/9781316534243
http://dx.doi.org/10.1016/j.ocemod.2019.101511
https://doi.org/10.1016/S0065-2687(08)60442-2
https://doi.org/10.1016/j.csr.2007.01.023
https://doi.org/10.1016/j.csr.2007.01.023


Griffies,	S.	M.,	Pacanowski,	R.	C.,	and	Hallberg,	R.	W.	(2000).	Spurious	diapycnal	mixing	associated	
with	advection	in	a	z-coordinate	ocean	model.	Monthly	Weather	Review,	128,	538-564,	https://doi.or
g/10.1175/1520-0493(2000)128<0538:SDMAWA>2.0.CO;2 

Griffies,	S.	M.	(2006).	Some	ocean	model	fundamentals.	In	“Ocean	Weather	Forecasting”,	Editoris:	E.	
P.	Chassignet	and	J.	Verron,	19-73,	Springer-Verlag,	Dordrecht,	The	Netherlands,	doi:10.1007/1-4020-
4028-8_2 

Hallberg,	R.	(2013).	Using	a	resolution	function	to	regulate	parameterizations	of	oceanic	mesoscale	
eddy	effects.	Ocean	Modelling,	72,	92-103,	https://doi.org/10.1016/j.ocemod.2013.08.007 

Hersbach	H.	(2000).	Decomposition	of	the	continuous	ranked	probability	score	for	ensemble	pre-
diction	systems.	Weather	and	Forecasting,	15(5),	559-570,	https://doi.org/10.1175/1520-0434(2000)0
15<0559:DOTCRP>2.0.CO;2

Herzfeld,	M.,	and	Gillibrand,	P.A.	(2015).	Active	open	boundary	forcing	using	dual	relaxation	time-scales	
in	downscaled	ocean	models.	Ocean	Modelling,	89,	71-83,	https://doi.org/10.1016/j.ocemod.2015.02.004    

Hewitt,	H.T.,	Roberts,	M.,	Mathiot,	P.	et	al.	(2020).	Resolving	and	Parameterising	the	Ocean	Mesoscale	in	Earth	
System	Models.	Current	Climate	Change	Reports,	6,	137-152,	https://doi.org/10.1007/s40641-020-00164-w 

Hirsch,	C.	(2007).	Numerical	Computation	of	Internal	and	External	Flows	-	The	Fundamentals	of	Com-
putational	Fluid	Dynamics.	2nd	Edition,	Butterworth-Heinemann.

Hunke,	E.,	Allard,	R.,	Blain,	P.,	Blockey,	E.,	Feltham,	D.,	Fichefet,	T.,	Garric,	G.,	Grumbine,	R.,	Lemieux,	J.-F.,	
Rasmussen,	T.,	Ribergaard,	M.,	Roberts,	A.,	Schweiger,	A.,	Tietsche,	S.,	Tremblay,	B.,	Vancoppenolle,	M.,	
Zhang,	J.	(2020).	Should	Sea-Ice	Modeling	Tools	Designed	for	Climate	Research	Be	Used	for	Short-Term	
Forecasting?	Current	Climate	Change	Reports,	6,	121-136,	https://doi.org/10.1007/s40641-020-00162-y 

Ide,	K.,	Courtier,	P.,	Ghil,	M.,	and	Lorenc,	A.	C.	 (1997).	Unified	notation	for	data	assimilation:	Oper-
ational,	sequential	and	variational	(Special	Issue	Data	Assimilation	in	Meteorology	and	Oceanog-
raphy:	Theory	and	Practice).	Journal	of	the	Meteorological	Society	of	Japan,	Ser.	II,	75(1B),	181-189,	
https://doi.org/10.2151/jmsj1965.75.1B_181 

Janssen,	P.A.E.M.,	Abdalla,	S.,	Hersbach,	H.,	Bidlot,	J.R.	(2007).	Error	estimation	of	buoy,	satellite,	and	
model	wave	height	data.	Journal	of	Atmospheric	and	Oceanic	Technology,	24(9),	1665-1677,	https://
doi.org/10.1175/JTECH2069.1 

Juricke,	S.,	Lemke,	P.,	Timmermann,	R.,	Rackow,	T.	(2013).	Effects	of	Stochastic	Ice	Strength	Perturba-
tion	on	Arctic	Finite	Element	Sea	Ice	Modeling.	Journal	of	Climate,	American	Meteorological	Society,	
26(11),	3785-3802,	https://doi.org/10.1175/JCLI-D-12-00388.1  

Kantha,	L.	H.,	&	Clayson,	C.	A.	(2000).	Numerical	models	of	oceans	and	oceanic	processes.	Elsevier,	
1-940,	ISBN:	978-0-12-434068-8.

Katavouta,	A.,	Thompson,	K.R.	(2016).	Downscaling	ocean	conditions	with	application	to	the	Gulf	of	
Maine,	Scotian	Shelf	and	adjacent	deep	ocean.	Ocean	Modelling,	104,	54-72,	https://doi.org/10.1016/j.
ocemod.2016.05.007  

Lamouroux,	J.,	Charria,	G.,	Mey,	P.	De,	Raynaud,	S.,	Heyraud,	C.,	Craneguy,	P.,	Dumas,	F.,	Le	Hénaff,	M.	
(2016).	Objective	assessment	of	the	contribution	of	the	RECOPESCA	network	to	the	monitoring	of	3D	
coastal	ocean	variables	in	the	Bay	of	Biscay	and	the	English	Channel.	Ocean	Dynamics,	66(4),	567-
588,	http://dx.doi.org/10.1007/s10236-016-0938-y 

Latif,	M.,	Barnett,	T.P.,	Cane,	M.A.	et	al.	(1994).	A	review	of	ENSO	prediction	studies.	Climate	Dynamics,	9,	167-179.

CHAPTER 5. CIRCULATION MODELLING 120

https://doi.org/10.1175/1520-0493(2000)128<0538:SDMAWA>2.0.CO;2
https://doi.org/10.1175/1520-0493(2000)128<0538:SDMAWA>2.0.CO;2
https://doi.org/10.1016/j.ocemod.2013.08.007
https://doi.org/10.1175/1520-0434(2000)015<0559:DOTCRP>2.0.CO;2
https://doi.org/10.1175/1520-0434(2000)015<0559:DOTCRP>2.0.CO;2
https://doi.org/10.1016/j.ocemod.2015.02.004
https://doi.org/10.1007/s40641-020-00164-w
https://doi.org/10.1007/s40641-020-00162-y
https://doi.org/10.2151/jmsj1965.75.1B_181
https://doi.org/10.1175/JTECH2069.1
https://doi.org/10.1175/JTECH2069.1
https://doi.org/10.1175/JCLI-D-12-00388.1
https://doi.org/10.1016/j.ocemod.2016.05.007
https://doi.org/10.1016/j.ocemod.2016.05.007
http://dx.doi.org/10.1007/s10236-016-0938-y


Le	Traon,	P.	Y.,	Reppucci,	A.,	Alvarez	Fanjul,	E.,	Aouf,	L.,	Behrens,	A.,	Belmonte,	M.,	...	and	Zachariouda-
ki,	A.	(2019).	From	observation	to	information	and	users:	the	Copernicus	Marine	Service	perspective.	
Frontiers	in	Marine	Science,	6,	234,	https://doi.org/10.3389/fmars.2019.00234 

Lellouche,	J.-M.,	Le	Galloudec,	O.,	Drévillon,	M.,	Régnier,	C.,	Greiner,	E.,	Garric,	G.,	Ferry,	N.,	Desportes,	
C.,	Testut,	C.-E.,	Bricaud,	C.,	Bourdallé-Badie,	R.,	Tranchant,	B.,	Benkiran,	M.,	Drillet,	Y.,	Daudin,	A.,	De	
Nicola,	C.	(2013).	Evaluation	of	global	monitoring	and	forecasting	systems	at	Mercator	Océan.	Ocean	
Science,	9,	57-81,	2013,	https://doi.org/10.5194/os-9-57-2013  

Lima,	L.N.,	Pezzi,	L.P.,	Penny,	S.G.,	and	Tanajura,	C.A.S.,	(2019).	An	investigation	of	ocean	model	un-
certainties	 through	 ensemble	 forecast	 experiments	 in	 the	 Southwest	 Atlantic	 Ocean.	 Journal	 of	
Geophysical	Research:	Oceans,	124,	432-452.	https://doi.org/10.1029/2018JC013919 

Lumpkin,	R.,	and	Speer,	K.	(2007).	Global	Ocean	Meridional	Overturning.	Journal	of	Physical	Ocean-
ography,	37(10),	2550-2562,	https://doi.org/10.1175/JPO3130.1 

Lyard,	F.	H.,	Allain,	D.	J.,	Cancet,	M.,	Carrere,	L.,	and	Picot,	N.	(2021).	Fes2014	global	ocean	tides	atlas:	
design	and	performances.	Ocean	Science,	17,	615-649,	https://doi.org/10.5194/os-17-615-2021 

Madec,	G.,	and	NEMO	System	Team,	(2022).	“NEMO	ocean	engine”,	Scientific	Notes	of	Climate	Mod-
elling	Center	(27)	–	ISSN	1288-1619,	Institut	Pierre-Simon	Laplace	(IPSL),	doi:10.5281/zenodo.6334656	

Martin,	M.	J.,	Hines,	A.,	and	Bell,	M.	J.	(2007).	Data	assimilation	in	the	FOAM	operational	short-range	
ocean	forecasting	system:	a	description	of	the	scheme	and	its	impact.	Quarterly	Journal	of	the	Royal	
Meteorological	Society,	133(625),	981-995,	https://doi.org/10.1002/qj.74 

Martin,	M.	J.,	Balmaseda,	M.,	Bertino,	L.,	Brasseur,	P.,	Brassington,	G.,	Cummings,	J.,	...	and	Weaver,	A.	
T.	(2015).	Status	and	future	of	data	assimilation	in	operational	oceanography.	Journal	of	Operational	
Oceanography,	8(sup1),	s28-s48,	https://doi.org/10.1080/1755876X.2015.1022055 

Mason,	E.,	Pascual,	A.,	and	McWilliams,	J.C.	(2014).	A	new	sea	surface	height–based	code	for	oceanic	
mesoscale	eddy	tracking.	Journal	of	Atmospheric	and	Oceanic	Technology,	31(5),	1181-1188,	https://
doi.org/10.1175/JTECH-D-14-00019.1 

Mazloff,	M.	R.,	Cornuelle,	B.,	Gille,	S.	T.,	Wang,	 J.	 (2020).	The	importance	of	remote	forcing	for	regional	
modeling	of	 internal	waves.	 Journal	of	Geophysical	Research:	Oceans,	125,	e2019JC015623,	https://doi.
org/10.1029/2019JC015623  

Menard,	R.,	and	Daley,	R.	(1996).	The	application	of	Kalman	smoother	theory	to	the	estimation	of	4DVAR	
error	statistics.	Tellus	A:	Dynamic	Meteorology	and	Oceanography,	48,	221-237,	https://doi.org/10.3402/
tellusa.v48i2.12056 

Mittermaier,	M.,	Roberts,	N.,	and	Thompson,	S.A.	(2013).	A	long-term	assessment	of	precipitation	forecast	skill	
using	the	Fractions	Skill	Score.	Meteorological	Applications,	20(2),	176-186,	https://doi.org/10.1002/met.296  

Mittermaier,	M.,	North,	R.,	Maksymczuk,	J.,	Pequignet,	C.,	&	Ford,	D.	(2021).	Using	feature-based	verification	
methods to explore the spatial and temporal characteristics of forecasts of the 2019 Chlorophyll-a bloom sea-
son	over	the	European	North-West	Shelf.	Ocean	Science,	17,	1527-1543,	https://doi.org/10.5194/os-17-1527-2021 

Mogensen,	K,	Balmaseda,	A.,	Alonso,	W.M.	(2012).	The	NEMOVAR	ocean	data	assimilation	system	as	im-
plemented	in	the	ECMWF	ocean	analysis	for	System	4.	Technical	memorandum,	doi:10.21957/x5y9yrtm	

O'Brien,	M.P.,	and	Johnson,	J.W.	(1947).	Wartime	research	on	waves	and	surf.	The	Military	Engineer,	
39,	pp.	239-242.

CHAPTER 5. CIRCULATION MODELLING 121

https://doi.org/10.3389/fmars.2019.00234
https://doi.org/10.5194/os-9-57-2013
https://doi.org/10.1029/2018JC013919
https://doi.org/10.1175/JPO3130.1
https://doi.org/10.5194/os-17-615-2021
https://doi.org/10.1002/qj.74
https://doi.org/10.1080/1755876X.2015.1022055
https://doi.org/10.1175/JTECH-D-14-00019.1
https://doi.org/10.1175/JTECH-D-14-00019.1
https://doi.org/10.1029/2019JC015623
https://doi.org/10.1029/2019JC015623
https://doi.org/10.3402/tellusa.v48i2.12056
https://doi.org/10.3402/tellusa.v48i2.12056
https://doi.org/10.1002/met.296
https://doi.org/10.5194/os-17-1527-2021


Oke,	P.	R.,	Brassington,	G.	B.,	Griffin,	D.	A.,	and	Schiller,	A.	(2008).	The	Bluelink	ocean	data	assimila-
tion	system	(BODAS).	Ocean	Modelling,	21(1-2),	46-70,	https://doi.org/10.1016/j.ocemod.2007.11.002 

Ollinaho,	 P.,	 Lock,	 S.,	 Leutbecher,	M.,	 Bechtold,	 P.,	 Beljaars,	 A.,	 Bozzo,	 A.,	 Forbes,	 R.M.,	 Haiden,	 T.,	
Hogan,	R.J.,	Sandu,	I.	(2017).	Towards	process-level	representation	of	model	uncertainties:	stochas-
tically	perturbed	parametrizations	in	the	ECMWF	ensemble.	Quarterly	Journal	of	the	Royal	Meteoro-
logical	Society,	143,	408-422,	http://dx.doi.org/10.1002/qj.2931 

Palmer,	T.	(2018).	The	ECMWF	ensemble	prediction	system:	Looking	back	(more	than)	25	years	and	
projecting	 forward	 25	 years.	 Quarterly	 Journal	 of	 the	 Royal	 Meteorological	 Society,	 145,	 12-24,	
https://doi.org/10.1002/qj.3383 

Penduff,	T.,	Barnier,	B.,	Terray,	L.,	Sérazin,	G.,	Gregorio,	S.,	Brankart,	J.-M.,	Moine,	M.-P.,	Molines,	J.-M.,	
Brasseur,	P.	(2014).	Ensembles	of	eddying	ocean	simulations	for	climate.	In:	CLIVAR	Exchanges,		65(19),	
26-29. Available at: https://www.clivar.org/sites/default/files/documents/exchanges65_0.pdf 

Pham,	D.	 T.,	 Verron,	 J.,	 and	Roubaud,	M.C.	 (1998).	 A	 singular	 evolutive	Kalman	 filters	 for	data	as-
similation	 in	 oceanography.	 Journal	 of	Marine	 Systems,	 16(3-4),	 323-340,	https://doi.org/10.1016/
S0924-7963(97)00109-7 

Pinardi,	N.,	Lermusiaux,	P.F.J.,	Brink,	K.H.,	Preller,	R.	H.	(2017).	The	Sea:	The	science	of	ocean	predic-
tions.	Journal	of	Marine	Research,	75(3),	101-102,	https://doi.org/10.1357/002224017821836833 

Quattrocchi,	G.,	De	Mey,	P.,	Ayoub,	N.,	Vervatis,	V.,	Testut,	C.-E.,	Reffray,	G.,	Chanut,	J.,	Drillet,	Y.,	(2014).	
Characterisation of errors of a regional model of the bay of biscay in response to wind uncertain-
ties:	 a	 first	 step	 toward	 a	 data	 assimilation	 system	 suitable	 for	 coastal	 sea	 domains.	 Journal	 of	
Operational	Oceanography,	7(2),	25-34,	https://doi.org/10.1080/1755876X.2014.11020156 

Ren,	S.,	Zhu,	X.,	Drevillon,	M.,	Wang,	H.,	Zhang,	Y.,	Zu,	Z.,	Li,	A.	(2021).	Detection	of	SST	Fronts	from	a	
High-Resolution	Model	and	Its	Preliminary	Results	in	the	South	China	Sea.	Journal	of	Atmospheric	
and	Oceanic	Technology,	38(2),	387-403,	https://doi.org/10.1175/JTECH-D-20-0118.1 

Ryan,		A.		G.,		Regnier,		C.,		Divakaran,		P.,		Spindler,		T.,		Mehra,		A.,		Smith,		G.		C.,	et	al.	(2015).	GODAE	
OceanView	Class	4	forecast	verification	framework:	global	ocean	inter-comparison.	Journal	of	Oper-
ational	Oceanography,	8(sup1),	S112-S126,	https://doi.org/10.1080/1755876X.2015.1022330 

Sakov,	P.,	Counillon,	F.,	Bertino,	L.,	Lisæter,	K.A.,	Oke,	P.R.,	Korablev,	A.,	(2012).	TOPAZ4:	an	ocean-sea	ice	
data	assimilation	system	for	the	north	atlantic	and	arctic.	Ocean	Science,	8	(4),	633–656,	http://dx.doi.
org/10.5194/os-8-633-2012 

Sandery,	P.A.,	and	Sakov,	P.	(2017).	Ocean	forecasting	of	mesoscale	features	can	deteriorate	by	increasing	
model	resolution	towards	the	submesoscale.	Nature	Communications,	8,	1566,	http://dx.doi.org/10.1038/
s41467-017-01595-0 

Santana-Falcón,	Y.,	Brasseur,	P.,	Brankart,	J.M.,	and	Garnier,	F.	(2020).	Assimilation	of	chlorophyll	data	
into	a	stochastic	ensemble	simulation	for	the	North	Atlantic	Ocean.	Ocean	Science,	16,	1297-1315,	
https://doi.org/10.5194/os-16-1297-2020   

Sasaki,	Y.	(1970).	Some	basic	formalisms	in	numerical	variational	analysis.	Monthly	Weather	Review,	
98(12),	875-883.

Sein,	D.V.,	Koldunov,	N.K.,	Danilov,	S.,	Wang,Q.,		Sidorenko,	D.,	Fast,	I.,	Rackow,	T.,	Cabos,	W.,	Jung,	T.	
(2017).	Ocean	Modelling	on	a	Mesh	With	Resolution	Following	the	Local	Rossby	Radius.	Journal	of	
Advances	in	Modelling	Earth	Systems,	9:7,	2601-2614,	https://doi.org/10.1002/2017MS001099 

CHAPTER 5. CIRCULATION MODELLING 122

https://doi.org/10.1016/j.ocemod.2007.11.002
http://dx.doi.org/10.1002/qj.2931
https://doi.org/10.1002/qj.3383
https://www.clivar.org/sites/default/files/documents/exchanges65_0.pdf
https://doi.org/10.1016/S0924-7963(97)00109-7
https://doi.org/10.1016/S0924-7963(97)00109-7
https://doi.org/10.1357/002224017821836833
https://doi.org/10.1080/1755876X.2014.11020156
https://doi.org/10.1175/JTECH-D-20-0118.1
https://doi.org/10.1080/1755876X.2015.1022330
http://dx.doi.org/10.5194/os-8-633-2012
http://dx.doi.org/10.5194/os-8-633-2012
http://doi.org/10.5194/os-13-123-2017
http://doi.org/10.5194/os-13-123-2017
https://doi.org/10.5194/os-16-1297-2020
https://doi.org/10.1002/2017MS001099


Simon,	E.,	and	Bertino,	L.	(2009).	Application	of	the	Gaussian	anamorphosis	to	assimilation	in	a	3-D	
coupled physical-ecosystem model of the North Atlantic with the EnKF: a twin experiment. Ocean 
Science,	5,	495-510,	2009,	https://doi.org/10.5194/os-5-495-2009 

Smith,	G.M.,	Roy,	F.,	Reszka,	M.,	Surcel	Colan,	D.,	He,	Z.,	Deacu,	D.,	Belanger,	J.-M.,	Skachko,S.,	Liu,	Y.,	
Dupont,	F.,	Lemieux,	J.-F.,	Beaudoin,	C.,	Tranchant,	B.,	Drévillon,	M.,	Garric,	G.,	Testut,	G.-E.,	Lellouche,	
J.-M.,	Pellerin,	P.,	Ritchie,	H.,	Lu,	Y.,	Davidson,	F.,	Buehner,	M.,	Caya,	A.,	Lajoie,	M.	(2016).	Sea	ice	fore-
cast	verification	in	the	Canadian	Global	Ice	Ocean	Prediction	System.	Quarterly	Journal	of	the	Royal	
Meteorological	Society,	142(695),	659-671,	https://doi.org/10.1002/qj.2555  

Storto,	A.,	and	Andriopoulos,	P.,	(2021).	A	new	stochastic	ocean	physics	package	and	its	application	
to	hybrid-covariance	data	assimilation.	Quarterly	Journal	of	the	Royal	Meteorological	Society,	147,	
1691-1725,	https://doi.org/10.1002/qj.3990 

Tchonang,	B.C.,	Benkiran,	M.,	Le	Traon	P.-Y.,	Van	Gennip,	S.J.,	Lellocuhe,	J.M.,	Ruggiero,	G.	(2021).	Assessing	
the impact of the assimilation of SWOT observations in a global high-resolution analysis and forecasting 
system.	Part	2:	Results.	Frontiers	in	Marine	Science,	8:687414,	https://doi.org/10.3389/fmars.2021.687414 

Thacker,	W.C.,	Srinivasan,	A.,	 Iskandarani,	M.,	Knio,	O.M.,	Le	Hénaff,	M.,	 (2012).	Propagating	bound-
ary	 uncertainties	 using	 polynomial	 expansions.	 Ocean	 Modelling,	 43-44,	 52-63,	 http://dx.doi.
org/10.1016/j.ocemod.2011.11.011 

Thoppil,	P.G.,	Frolov,	S.,	Rowley,	C.D.	et	al.	(2021).	Ensemble	forecasting	greatly	expands	the	predic-
tion	horizon	for	ocean	mesoscale	variability.	Communications	Earth	&	Environment,	2,	89,	https://
doi.org/10.1038/s43247-021-00151-5 

Toublanc,	F.,	Ayoub,	N.K.,	Lyard,	F.,	Marsaleix,	P.,	Allain,	D.J.,	2018.	Tidal	downscaling	from	the	open	
ocean	to	the	coast:	a	new	approach	applied	to	the	Bay	of	Biscay.	Ocean	Modelling,	214,	16-32.	http://
dx.doi.org/10.1016/j.ocemod.2018.02.001 

Usui,	 N.,	 Ishizaki,	 S.,	 Fujii,	 Y.,	 Tsujino,	H.,	 Yasuda,	 T.,	 Kamachi,	M.	 (2006).	Meteorological	 Research	
Institute	multivariate	ocean	variational	estimation	(MOVE)	system:	Some	early	results.	Advances	in	
Space	Research,	37(4),	806-822,	https://doi.org/10.1016/j.asr.2005.09.022  

Vervatis,	V.	D.,	Testut,	C.E..	De	Mey,	P.,	Ayoub,	N.,	Chanut,	J.,	Quattrocchi,	G.	(2016).	Data	assimilative	
twin-experiment in a high-resolution Bay of Biscay configuration: 4D EnOI based on stochastic mod-
elling	of	the	wind	forcing.	Ocean	Modelling,	100,	1-19,	https://doi.org/10.1016/j.ocemod.2016.01.003 

Vervatis,	 V.D.,	 De	Mey-Frémaux,	 P.,	 Ayoub,	N.,	 Karagiorgos,	 J.,	 Ciavatta,	 S.,	 Brewin,	 R.,	 Sofianos,	 S.,	
(2021a).	Assessment	of	a	regional	physical-biogeochemical	stochastic	ocean	model.	Part	2:	empiri-
cal	consistency.	Ocean	Modelling,	160,	101770,	http://dx.doi.org/10.1016/j.ocemod.2021.101770 

Vervatis,	V.	D.,	De	Mey-Frémaux,	P.,	Ayoub,	N.,	Karagiorgos,	J.,	Ghantous,	M.,	Kailas,	M.,	Testut,	C.-E.,	and	
Sofianos,	S.,	(2021b).	Assessment	of	a	regional	physical-biogeochemical	stochastic	ocean	model.	Part	
1:	ensemble	generation.	Ocean	Modelling,	160,	101781,	https://doi.org/10.1016/j.ocemod.2021.101781 

Waters,	J.,	Lea,	D.L.,	Martin,	M.J.,	Mirouze,	I.,	Weaver,	A.,	While,	J.	(2014).	Implementing	a	variational	
data	assimilation	system	in	an	operational	1/4	degree	global	ocean	model.	Quarterly	Journal	of	the	
Royal	Meteorological	Society,	141(687),	333-349,	https://doi.org/10.1002/qj.2388  

Zaron,	 E.D.	 (2011).	 Introduction	 to	 Ocean	 Data	 Assimilation.	 In:	 Schiller,	 A.,	 Brassington,	 G.	 (eds)	
“Operational	Oceanography	 in	 the	21st	Century”.	Springer,	Dordrecht.	https://doi.org/10.1007/978-
94-007-0332-2_13 

123CHAPTER 5. CIRCULATION MODELLING

https://doi.org/10.5194/os-5-495-2009
https://doi.org/10.1002/qj.2555
https://doi.org/10.1002/qj.3990
https://doi.org/10.3389/fmars.2021.687414
http://dx.doi.org/10.1016/j.ocemod.2011.11.011
http://dx.doi.org/10.1016/j.ocemod.2011.11.011
https://doi.org/10.1038/s43247-021-00151-5
https://doi.org/10.1038/s43247-021-00151-5
http://dx.doi.org/10.1016/j.ocemod.2018.02.001
http://dx.doi.org/10.1016/j.ocemod.2018.02.001
https://doi.org/10.1016/j.asr.2005.09.022
https://doi.org/10.1016/j.ocemod.2016.01.003
http://dx.doi.org/10.1016/j.ocemod.2021.101770
https://doi.org/10.1016/j.ocemod.2021.101781
https://doi.org/10.1002/qj.2388
https://doi.org/10.1007/978-94-007-0332-2_13
https://doi.org/10.1007/978-94-007-0332-2_13

	5.Circulation modelling
	5.1.	General introduction to circulation models
	5.1.1.	Objective, applications and beneficiaries
	5.1.2.	Circulation Physics

	5.2.	Circulation forecast and multi-year systems
	5.2.1.	Ocean-Earth system as basis for OOFS
	5.2.2.	Architecture singularities

	5.3.	Input data
	5.4.	Modelling component: general circulation models
	5.4.1.	Mathematical model
	5.4.2.	Basic discretization techniques
	5.4.3.	List of Ocean General Circulation Models
	5.4.4.	Downscaling large-scale solutions to regional/coastal circulation models

	5.5.	Data assimilation systems 
	5.5.1.	Basic concepts
	5.5.2.	Sequential methods
	5.5.3.	Variational methods
	5.5.4.	Modelling errors
	5.5.5.	Overview of current data assimilation systems in operational forecasting

	5.6.	Ensemble modelling 
	5.6.1.	Basic concepts
	5.6.2.	Ocean model uncertainties
	5.6.3.	Towards ocean EPS

	5.7.	Validation strategies
	5.8.	Outputs
	5.8.1.	Variables/EOV

	5.9.	Inventories
	5.9.1.	Inventory of operational global to regional to coastal to local forecasting systems
	5.9.2.	Inventory of multi-year systems

	5.10.	References

	5.
Circulation modelling
	5.1.	General introduction to circulation models
	5.1.1.	Objective, applications and beneficiaries
	5.1.2.	Circulation Physics

	5.2.	
Circulation forecast and multi-year systems
	5.2.1.	Ocean-Earth system as basis for OOFS
	5.2.2.	Architecture singularities

	5.3.	
Input data
	5.4.	
Modelling component: general circulation models
	5.4.1.	Mathematical model
	5.4.2.	Basic discretization techniques
	5.4.2.1.	Horizontal grids
	5.4.2.2.	Vertical discretization
	5.4.2.3.	Time stepping
	5.4.2.4.	Numerical techniques 

	5.4.3.	List of Ocean General Circulation Models
	5.4.4.	Downscaling large-scale solutions to regional/coastal circulation models

	5.5.	
Data assimilation systems 
	5.5.1.	Basic concepts
	5.5.2.	Sequential methods
	5.5.3.	Variational methods
	5.5.4.	Modelling errors
	5.5.5.	Overview of current data assimilation systems in operational forecasting

	5.6.	
Ensemble modelling 
	5.6.1.	Basic concepts
	5.6.2.	Ocean model uncertainties
	5.6.3.	Towards ocean EPS

	5.7.	
Validation strategies
	5.8.	
Outputs
	5.8.1.	Variables/EOV

	5.9.	
Inventories
	5.9.1.	Inventory of operational global to regional to coastal to local forecasting systems
	5.9.2.	Inventory of multi-year systems

	5.10.	
References


	Next Section 37: 
	HOME 11: 
	Page 83: 

	Previous Section 44: 
	Next Section 28: 
	Next Section 36: 
	Next Section 45: 
	Next Section 11: 
	Next Section 17: 
	 01 INTRODUCTION 5: 
	Page 129: 

	Next Section 25: 
	12 CHALLENGES 4: 
	Page 129: 

	Previous Section 43: 
	Next Section 43: 
	Previous Section 42: 
	Next Section 21: 
	Previous Section 36: 
	Next Section 46: 
	Next Section 33: 
	HOME 12: 
	Page 84: 
	Page 85: 

	Previous Section 31: 
	Next Section 14: 
	Previous Section 41: 
	Previous Section 16: 
	Previous Section 23: 
	07 SEA LEVEL 6: 
	Page 83: 

	Previous Section 39: 
	05 CIRCULATION 4: 
	Page 129: 

	Previous Section 34: 
	Previous Section 7: 
	02 CONTEXT 4: 
	Page 129: 

	08 WAVE 6: 
	Page 83: 

	Previous Section 33: 
	09 BIOGEOCHEMICAL 6: 
	Page 83: 

	Next Section 35: 
	10 COUPLED 4: 
	Page 129: 

	Previous Section 45: 
	06 SEA ICE 4: 
	Page 129: 

	Next Section 19: 
	Previous Section 14: 
	Next Section 15: 
	Next Chapter 9: 
	Page 86: 
	Page 87: 
	Page 88: 
	Page 89: 
	Page 90: 
	Page 91: 
	Page 92: 
	Page 93: 
	Page 94: 
	Page 95: 
	Page 96: 
	Page 97: 
	Page 98: 
	Page 99: 
	Page 100: 
	Page 101: 
	Page 102: 
	Page 103: 
	Page 104: 
	Page 105: 
	Page 106: 
	Page 107: 
	Page 108: 
	Page 109: 
	Page 110: 
	Page 111: 
	Page 112: 
	Page 113: 
	Page 114: 
	Page 115: 
	Page 116: 
	Page 117: 
	Page 118: 
	Page 119: 
	Page 120: 
	Page 121: 
	Page 122: 
	Page 123: 
	Page 124: 
	Page 125: 
	Page 126: 
	Page 127: 
	Page 128: 

	Previous Section 15: 
	Previous Section 24: 
	Next Chapter 8: 
	Page 84: 
	Page 85: 

	11 DOWNSTREAM 6: 
	Page 83: 

	Next Section 29: 
	Next Section 34: 
	03 CONEPTS 5: 
	Page 83: 

	Button 44: 
	Next Section 13: 
	03 CONCEPTS 5: 
	Page 129: 

	01 INTRODUCTION 5: 
	Page 83: 

	Previous Section 30: 
	Next Section 42: 
	Next Section 23: 
	Previous Chapter 4: 
	Page 86: 
	Page 87: 
	Page 88: 
	Page 89: 
	Page 90: 
	Page 91: 
	Page 92: 
	Page 93: 
	Page 94: 
	Page 95: 
	Page 96: 
	Page 97: 
	Page 98: 
	Page 99: 
	Page 100: 
	Page 101: 
	Page 102: 
	Page 103: 
	Page 104: 
	Page 105: 
	Page 106: 
	Page 107: 
	Page 108: 
	Page 109: 
	Page 110: 
	Page 111: 
	Page 112: 
	Page 113: 
	Page 114: 
	Page 115: 
	Page 116: 
	Page 117: 
	Page 118: 
	Page 119: 
	Page 120: 
	Page 121: 
	Page 122: 
	Page 123: 
	Page 124: 
	Page 125: 
	Page 126: 
	Page 127: 
	Page 128: 

	Next Section 38: 
	Next Section 39: 
	Previous Section 8: 
	04 ARCHITECTURE 6: 
	Page 83: 

	09 BIOGEOCHEMICAL 4: 
	Page 129: 

	Previous Section 28: 
	Previous Section 18: 
	HOME 4: 
	Page 129: 

	Previous Section 17: 
	Previous Chapter 6: 
	Page 84: 
	Page 85: 

	11 DOWNSTREAM 4: 
	Page 129: 

	Previous Section 21: 
	Previous Section 20: 
	Next Section 16: 
	Previous Section 37: 
	Previous Section 40: 
	Next Section 44: 
	Previous Section 10: 
	Next Section 22: 
	04 ARCHITECTURE 4: 
	Page 129: 

	12 CHALLENGES 6: 
	Page 83: 

	Previous Section 11: 
	Previous Section 13: 
	Previous Section 27: 
	Previous Section 38: 
	Next Section 18: 
	Next Section 30: 
	Previous Section 9: 
	Previous Section 29: 
	Next Section 26: 
	Button 42: 
	Previous Section 19: 
	Previous Section 47: 
	Next Section 24: 
	Next Section 41: 
	08 WAVE 4: 
	Page 129: 

	Previous Section 26: 
	Next Section 10: 
	Next Section 20: 
	Previous Section 46: 
	Next Section 12: 
	Next Section 31: 
	10 COUPLED 6: 
	Page 83: 

	Previous Section 25: 
	Previous Section 32: 
	Previous Section 22: 
	02 CONTEXT 6: 
	Page 83: 

	05 CIRCULATION 6: 
	Page 83: 

	06 SEA ICE 6: 
	Page 83: 

	07 SEA LEVEL 4: 
	Page 129: 

	HOME 6: 
	Page 86: 
	Page 87: 
	Page 88: 
	Page 89: 
	Page 90: 
	Page 91: 
	Page 92: 
	Page 93: 
	Page 94: 
	Page 95: 
	Page 96: 
	Page 97: 
	Page 98: 
	Page 99: 
	Page 100: 
	Page 101: 
	Page 102: 
	Page 103: 
	Page 104: 
	Page 105: 
	Page 106: 
	Page 107: 
	Page 108: 
	Page 109: 
	Page 110: 
	Page 111: 
	Page 112: 
	Page 113: 
	Page 114: 
	Page 115: 
	Page 116: 
	Page 117: 
	Page 118: 
	Page 119: 
	Page 120: 
	Page 121: 
	Page 122: 
	Page 123: 
	Page 124: 
	Page 125: 
	Page 126: 
	Page 127: 
	Page 128: 

	Next Section 32: 
	Previous Section 35: 
	Previous Section 12: 
	Next Section 27: 
	Next Section 40: 


