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5.1.	  
General introduction to circulation models
5.1.1.	 Objective, applications and beneficiaries

The main objective of any OOFS is to provide users with the best 
reliable and easy access information available on the state of 
the ocean in near real-time. The service is meant for any user, 
and especially downstream service providers who use the infor-
mation as an input to their own value-added services.

A forecasting system relies on a numerical ocean model and, 
in many cases, on a data assimilation component able to as-
similate the available observations and provide a complete 
dataset that can be used as initial conditions by the ocean 
circulation model. The availability of relevant observations 
is crucial to the success of an OOFS and the development of 
models and numerical techniques, along with data assimi-
lation schemes that combine all the information taking into 
account the uncertainties of the observations and models. 

The circulation modelling component represents one of the 
main cores of operational marine monitoring and forecasting 
systems: it provides an overall description of ocean physical 
essential variables (i.e. temperature, salinity, currents, sea 
surface height, etc.) for ocean predictions and for supporting 
climate studies. Ocean models are able to describe the sea 
state from global to coastal scales and to predict its variabil-
ity and evolution in time (from short to mid-term to long-
term). This is done by numerically solving a set of partial 
differential equations, based on an approximated version of 
the Navier-Stokes equations.

At the beginning of the XX century, Bjerknes (1914) described 
a practical method that could solve the mathematical dynam-
ic and thermodynamic equations at least for a finite amount 
of time. He defined two factors that were necessary to make 
predictions a reality: (1) knowledge of the initial conditions as 
accurately as possible, and (2) the development of an accu-
rate predictive model. The latter consisted of discretizing the 
equations and using numerical methods to solve for the time 
derivative. Based on this approach, the first successful meteo-
rological forecast became operational at the end of the 1960s, 
while ocean forecasting began in the 1980s; a joint venture be-
tween Harvard University and the Naval Postgraduate School 
in Monterey, both in the United States, completed the first 
successful forecast of ocean mesoscales in a limited ocean 
area (see Pinardi et al., 2017, for an overview of the ocean pre-
diction science). Earlier examples of wave forecasting during 
the second World War responded to the need to know the sea 
state during landing operations (O'Brien and Johnson, 1947).

During the last decades of the 20th century and the first de-
cades of the 21st century, ocean forecasting has become an 

operational activity and, thanks to the increase of computing 
power, today we are able to numerically integrate the gov-
erning equations at very high resolution in space and time, 
to study multi-scale ocean processes, physical properties 
and their impacts on the climate, and human activities af-
fecting the environment. In modern ocean prediction, sto-
chastic approaches and ensemble estimates complement 
deterministic solutions, accounting for the different sources 
of uncertainties (e.g. errors in the initial conditions, in the 
forcing functions, in the physics of the numerical model, and 
in the bathymetry) that unavoidably affects the final solution 
and tends to increase over the forecast period. 

To improve the quality of predictions, data assimilation and 
ensemble techniques are widely used, and their primary scope 
is to rigorously and systematically combine available observa-
tions (in situ and satellite) with numerical ocean models to 
provide the best estimate of the forecasting cycle. However, in 
case of very high-resolution nested models and when obser-
vation availability is limited, operational systems do not use a 
data assimilation procedure. When possible, an OOFS system 
needs to retrieve data observations from a wide variety of ob-
serving platforms and systems over the domain of interest for 
prediction. Satellite based observing systems provide a large 
source of observational data for an OOFS as well.

An OOFS needs to access information from a numerical 
weather prediction system in order to provide surface bound-
ary forcing information. The OOFS will also require informa-
tion on other parameters that influence the ocean such as 
river outflows, etc. Depending on the domain of interest, the 
OOFS may also require information about sea ice (see Section 
4.2 for the input data and Chapter 6 for understanding sea 
ice modelling basics). Observations are also used to provide 
a quantitative understanding of the capacity of the ocean 
model to make predictions by means of validation and cali-
bration techniques and, consequently, to measure and mon-
itor the accuracy of the forecasting product (see Section 4.5). 
Routine validation and verification information will tell the 
OOFS operators when a model is not performing well. The 
errors identified through validation and verification can be 
used to set priorities for further development of the OOFS. 
Despite the enormous improvements reached nowadays 
by operational forecasting systems ranging from global to 
coastal scales, much research is still needed to advance in 
ocean prediction. Developments include access to additional 
innovative autonomous multi-scale observing technologies 
observations, both remote and in situ (Le Traon et al., 2019), 
to new model developments (Fox-Kemper et al., 2019), up to 
next-generation computational methods and data assimila-
tion schemes supported by the recently expanding applica-
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tions of machine learning techniques in this field (De Mey-
Frémaux et al., 2019).

The ultimate purpose for operating an OOFS is the produc-
tion, preparation, and delivery of operational ocean forecasts 
to users in forms that meet their needs. There is a growing 
list of users relying on the products and services from op-
erational ocean forecasting systems. Ocean predictions will 
continue to produce an increasing number of marine ap-
plications and services: e.g. for maritime safety, marine re-
sources, coastal and marine environment (Chapter 11). This is 
because the new systems allow informed management and 
emergency decisions to be made based on physical knowl-
edge resolved at unprecedented space and time resolution, 
with known quality and accuracy. 

The emergence of operational organisations for delivering 
real-time forecasts and analyses will encourage the develop-
ment of value-added products, including forecasts for extreme 
weather driven events (such as storm surges), pollution, oil 
spills, acoustic properties (e.g. the speed of sound), sea ice, 
ecosystem management, safe offshore activities, search 
and rescue operations, optimal energy extraction, and 
maritime safety and transport. In addition, ocean forecast 
products and services can also be providers of informa-
tion for aquaculture, fishery research, and regional fishery 
organisations, contributing to the protection and sustain-
able management of living marine resources. Availability 
of predictions on the ocean helps to limit damages in the 
case of floods, storm surges, heat waves and other dangers 
associated with sea conditions. Furthermore, detailed and 
accurate forecasts are also useful to assist decision making 
to plan long-term strategies aiming at managing the risks as-
sociated with the impacts of climate change on the sea and 
coasts, such as sea level rise and marine heat waves.

A predicted ocean where society has the capacity to un-
derstand current and future ocean conditions is one of the 
proposed seven outcomes of the United Nations Decade of 
Ocean Sciences for Sustainable Development.

Scope of this chapter is to present all elements that make an 
OOFS and provides a detailed understanding of the main cir-
culation modelling components. For each component, a com-
prehensive description is provided in dedicated chapter sub-
sections, including the presentation of some state-of-the-art 
examples of ocean models currently working in operational 
frameworks. In addition, basic concepts of data assimilation 
systems and validation strategies will be presented as well, 
since an essential part of operating a model is to conduct the 
necessary validation and verification procedures to maintain a 
continuous quality control of the system outputs.

5.1.2.	 Circulation Physics

The physical processes, properties and circulation of the 
ocean are described numerically by the approximated Navi-
er-Stokes equations (details in Section 5.4.1). The equations 
allow the spatial and temporal distribution of the tempera-
ture, salinity, density, pressure, and currents to be described. 
Numerical ocean models are the building block of opera-
tional oceanography and fundamental for near real time to 
seasonal to decadal forecasts and climate projections. In 
operational oceanography, they are used alongside data as-
similation techniques to accurately represent the state of the 
ocean at a particular point in time and space, and to produce 
the initial condition of the forecasting system.

The governing equations for a real fluid are the Navier-Stokes 
equations, together with conservation of salt and heat and 
an equation of state; these equations support fast acoustic 
modes and involve nonlinearities in many terms that make 
their solution both difficult and expensive. A series of ap-
proximations are made to simplify and yield the “primitive 
equations”, which are the basis of most general circulation 
models. The assumptions that are made in ocean models are 
described in Section 5.4.

Ocean circulation models aim to represent key processes. These 
include: 1) transport of heat by the ocean; 2) the effect of evap-
oration, precipitation and runoff on ocean salinity and density; 
and 3) the role of ocean currents which, along with wind waves 
and tides, drive ocean mixing and water mass transformation. 
Ocean circulation models discretize the governing equations on 
a horizontal and vertical grid (Section 5.4 expands on this). The 
details of whether processes can be explicitly resolved in mod-
els or they must be parameterised depend on the resolution of 
the grid used to solve the approximate numerical system.

Figure 3.4 (see Chapter 3) shows the order of magnitude of 
spatial and temporal scales of specific ocean processes. If the 
model resolves scales of 100 km, ocean models should be able 
to resolve Kelvin and Rossby waves; indeed, the representa-
tion of Equatorial dynamics has been shown to be important 
for forecasting the evolution of El Nino on seasonal timescales 
(Latif et al., 1994). On shorter timescales but with similar spa-
tial scales, surface tides are key processes to represent. Mov-
ing to spatial scales of ~10 km to 100 km, the ocean mesoscale 
can start to be represented; this scale includes boundary cur-
rents and mesoscale eddies (Hewitt et al., 2020). At even finer 
scales, coastal upwelling, internal tides, and internal waves 
can be represented. Interactions with bathymetry can be im-
portant at the scale of the bathymetry. For example, choke 
points can determine the exchange between the deep ocean 
and inland seas, such as the Gibraltar Strait. Horizontal reso-
lution choices are discussed further in Section 5.4.
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While a primary consideration is the horizontal scales (Figure 
3.4), the choice of vertical resolution and coordinate is also 
an important consideration. These choices are discussed fur-
ther in Section 5.4, along with the numerical methods that 
are employed to solve the equations and some of the param-
eterisation choices to be made.

The ocean has strong links to other aspects of the Earth sys-
tem, such as sea ice, which is particularly important for modu-
lating temperature and salinity at high latitudes. Global ocean 
models include a sea ice component. State-of-the-art sea ice 
models represent the ice thermodynamics including melt-
ponds and the ice dynamics, with a representation of the ice 
rheology. Many sea ice models also capture the variations in 
ice thickness or ice age within a typical ocean grid box. Current 
status of sea ice modelling and the applicability of models for 
operational forecasting is discussed in Hunke et al. (2020). 

This chapter provides complementary information on the 
way to set an OOFS, which core is the circulation model. Sec-
tion 5.3 will provide a list of input data needed for setting up 
an ocean model, from static datasets such the bathymetry 
to operational products such atmospheric forcing, to other 
OOFS for the provisioning of initial/boundary conditions in 
case of regional/coastal models, to observations used for 
assimilation and validation. Section 5.4 focuses on the math-
ematical formulation of the primitive equations, providing 
some basic information to numerical methods for discreti-
zation and numerical integration of such equations. Section 
5.5 is devoted to presenting the basic mathematics for the 
data assimilation schemes commonly used in global and 
regional OOFS. Section 5.6 deals with ensemble modelling 
and, finally, Sections 5.7 and 5.8 provide major details on the 
validation approaches and the OOFS output. The last part of 
this chapter provides an inventory of OOFS, including multi-
year systems, operating at international level, from global to 
coastal scale.

5.2.	 
Circulation forecast and multi-year systems

mentum instead, we express the kinematic boundary 
condition. Additionally, the ocean exchanges momen-
tum with the Earth through friction; this needs to be pa-
rameterized in terms of turbulent fluxes using bottom 
and lateral boundary conditions.

These connections will be detailed along this chapter and 
represent the core of the OOFS architecture introduced in the 
next subsection.

5.2.2.	Architecture singularities

An OOFS that would provide the prediction, as well as the 
past reconstruction of the past state of the ocean, is based 
on several components that are strongly linked. A general in-
troduction to OOFS architecture singularities is provided in 
Chapter 4, which includes for each system component, input 
and output data, as well as links between some of the com-
ponents, are described. Complexity of the system, compo-
nents of the system, infrastructure, maintenance of the code, 
and monitoring of the whole data flow should be defined de-
pending on needs, robustness and operationality. Of course, 
the cost of the development, maintenance and evolution of 
the system depends on operational constraints. 

5.2.1.	 Ocean-Earth system as basis for OOFS

The ocean is a system that interacts with other systems. Fig-
ure 5.1 shows a simplified representation of the Earth system 
interaction in weather and ocean forecasting. Focusing on 
the ocean, we can identify (Madec et al., 2022):

•	 Connection with land: in particular with rivers and 
lakes which exchange freshwater flux with the ocean;

•	 Connection with the atmosphere: the ocean receives 
precipitation and returns evaporation. The atmosphere 
and the ocean also exchange horizontal momentum 
(wind stress) and heat;

•	 Connection with sea ice: the ocean exchanges heat, 
salt, freshwater and momentum with sea ice. The sea 
surface temperature is constrained to be at the freezing 
point of the interface. Sea ice salinity is very low (~4-6 
PSU) compared to that of the ocean (~34 PSU). The cycle 
of freezing/melting is associated with freshwater and 
salt fluxes and cannot be neglected;

•	 Connection with solid earth: heat and salt fluxes 
through the seafloor are small, hence no flux of heat 
and salt is considered across solid boundaries. For mo-

CHAPTER 5. CIRCULATION MODELLING 82



Figure 5.1.		 Representation of the ocean processes and connections with the Earth.

Elements needed to run a circulation model for operational 
forecasting:

•	 Observations. These are used for: 

•	 Validation (including forecast verification) and cali-
bration, further described in Section 5.7; 
•	 Data assimilation, which basic concepts are intro-
duced in Section 5.5;

Sources of observations are:

•	 In-situ observations for the following variables: tem-
perature, salinity, sea surface height, and sea surface 
currents. See Section 4.2.2. for more information on 
in-situ ocean observations;
•	 Satellite observations for the following list of vari-
ables: sea level anomaly, sea surface temperature, and 
sea ice concentration. Recently, other parameters such 
as sea surface salinity and sea ice thickness have been 
remotely measured. See Section 4.2.2. for more informa-
tion on in-situ ocean observations.

•	 Bathymetry. It is an indispensable topographical infor-
mation for an Ocean Circulation Forecasting System. Its 
resolution may significantly drive the modeller during the 

setup of the circulation model to address specific scales 
and resolution. For example, in coastal models we may 
need bathymetric datasets, whose resolution can be even 
lower than 100 m, to properly represent the physical struc-
tural peculiarities of both coastline and shelf area, allow-
ing the representation of small-scale physics. See more 
information on bathymetric data sets in Section 4.2.4.

•	 Atmospheric forcing. Generated by NWP services, it is 
vital to provide momentum, heat, and freshwater fluxes to 
the OOFS. More info on atmospheric forcing can be found 
in Section 4.2.5.

•	 Land forcing. Provides freshwater fluxes from rivers. 
More details on this data source are in Section 4.2.6. 

•	 Initial and boundary conditions from other OOFS. 
3D fields from parent models are required when down-
scaling to obtain higher resolutions (see Sections 4.2.7. 
and 5.4.4. for more information). 

•	 Climatological fields. These serve as complement to the 
other data sources or might be used to substitute the pre-
vious if no other data are available. See Section 4.2.8 for 
more information on climatologies.

5.3.	 
Input data
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5.4.	 
Modelling component: general circulation models
An ocean model is a numerical and computational tool used 
to understand and predict ocean variables (Griffies, 2006), 
providing a discrete solution of the geophysical fluid dynamic 
equations. It represents a rigorous way of linking the ocean 
state parameters through mathematical equations represent-
ing the physics that governs the oceans. 

In the next subsections, we will introduce the different com-
ponents of an OGCM, that is part of the OOFS (steps 1 and 2 
as in Figure 4.1), focusing on mathematical equations, numer-
ical methods, and spatial discretization techniques. A list of 
available numerical ocean models is provided in Table 5.1 in 
Section 5.4.3. Data assimilation methods used in OOFSs are 
instead presented in Section 5.5.

5.4.1.	 Mathematical model

The Navier-Stokes equations represent the fundamental laws 
of fluid dynamics; they are based on conservation of momen-
tum, conservation of mass, and an equation of state. 

Oceans are also represented by the following equations (al-
though with some significant simplifications as explained in 
Madec et al., 2022):

•	 Spherical Earth approximation: the geopotential sur-
faces are assumed to be oblate spheroids that follow 
the Earth’s bulge, and are approximated by spheres 
which gravity is locally vertical (parallel to the Earth’s 
radius) and independent from latitude;

•	 Thin-shell approximation: the ocean depth is neglect-
ed compared to the Earth’s radius;

•	 Turbulent closure hypothesis: the turbulent fluxes - 
which represent the effect of small-scale processes on the 
large scale - are expressed in terms of large scale features;

•	 Boussinesq hypothesis: density variations are ne-
glected, except in their contribution to buoyancy force:

(5.1)

•	 Hydrostatic hypothesis: the vertical momentum equa-
tion is reduced to a balance between the vertical pressure 
gradient and the buoyancy force (this removes convective 
processes from the initial Navier-Stokes equations and so 
convective processes must be parameterized instead):

(5.2)

•	 Incompressibility hypothesis: the 3D divergence of 
the velocity vector U is assumed to be zero:

(5.3)

•	 Neglect of additional Coriolis terms: the Coriolis terms 
that vary with the cosine of latitude are neglected.

Because the gravitational force dominates in the equations 
of large-scale motions, it is useful to choose an orthogonal 
set of unit vectors (i,j,k) linked to the Earth such that k is the 
local upward vector and (i,j) are 2 vectors orthogonal to k. Let 
us define additionally: U the vector velocity, T the potential 
temperature, S the salinity, ρ the insitu density. The vector 
invariant form of the primitive equations in the (i,j,k) vector 
system provides the following equations:

•	 The momentum balance:

(5.4)

•	 The heat and salt conservation equations:

(5.5)

(5.6)

where ∇ is the generalised derivative vector operator in (i,-
j,k)  directions, t is the time, z is the vertical coordinate, ρ is 
the in-situ density given by Eq. 5.1, ρ0 is the reference density, 
p is  the pressure, f=2Ω ∙k is the Coriolis acceleration (where 
Ω is the Earth’s angular velocity vector) and g is the gravita-
tional acceleration. DU, DT and DS are the parameterizations 
of small-scale physics for momentum, temperature and sa-
linity, while FU, FT and FS are surface forcing terms.

OGCMs are able to resolve the mesoscale in some regions but 
not in others; additionally, once applied for climate research, 
they cannot entirely reproduce the rich mesoscale eddy ac-
tivity we observe in reality. For this reason, mixing associated 
with sub-grid scale turbulence needs to be parameterized. 
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A common problem an ocean modeller is facing when he/
she deals with primitive equations is the numerical discret-
ization in space and time. As described in Hallberg (2013), 
numerical ocean models need to represent the effects of me-
soscale eddies, which are the typical horizontal scales of less 
than 100 km and timescales in the order of a month. When 
defining the spatial grid for the numerical integration of the 
primitive equations, it is important to account for the ratio of 
a model’s grid spacing to the deformation radius, defined as:

 
(5.7) 

where cg is the first-mode internal gravity wave speed, f is 
again the Coriolis parameter, and β is its meridional gradient 
(Chelton et al., 1998).

Figure 5.2 shows the ocean model resolution required for the 
baroclinic deformation radius to be twice the grid spacing, 
based on an eddy-permitting ocean model after one year of 
spin-up from climatology (Hallberg, 2013).

5.4.2.	Basic discretization techniques

The next step towards the setup of a numerical model is the 
discretization phase, which involves the spatial discretiza-
tion and the equation discretization.

The spatial discretization consists in defining a grid or mesh 
that would represent the space continuum with a finite num-
ber of points where the numerical values of the physical vari-
ables must be determined. In Section 5.4.2.1-2, basic concepts 
for dealing with horizontal grids and vertical discretization 
will be introduced. Once the mesh is defined, we move to the 
final step related to the primitive equations discretization 
by using numerical methods, which consist in transforming 
the mathematical model into an algebraic, nonlinear sys-
tem of equations for the mesh-related unknown quantities. 
The concepts on the basis of the time stepping are treated 
in Section 5.4.2.3. With the definition of the time-dependent 
numerical formulation, we finally select the discretization 
method to use for the equations, described in Section 5.4.2.4.

Figure 5.2.		 The horizontal resolution needed to resolve the first baroclinic deformation radius with two 
grid points, based on a 1/8º model on a Mercator grid on Jan 1 after one year of spinup from climatology (from 
Hallberg, 2013).
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5.4.2.1.	Horizontal grids

In numerical methods, we can use:

•	 Structured grids
•	 Unstructured grids

A mesh is structured when the grid cells have the same num-
ber of sides and the same number of neighbouring cells. 
Typically, in ocean models three kinds of grids may be used 
(Figure 5.3): the Arakawa-A grid, the Arakawa-B grid and the 
Arakawa C-grid. In the Arakawa-A grid (Figure 5.3A), all vari-
ables are evaluated at the same location. Then, the B and C 
grids have been developed respectively for coarse and fine 
resolution models. In the Arakawa-B grid (Figure 5.3B) both u 
(Northwards current component, in orange) and v (Eastwards 
current component, in green), for example, are evaluated at 
the same point and the velocity points are situated at the 
point that is equidistant from the four nearest elevation 
points (Elevation, in blue). In the Arakawa-C grid (Figure 5.3C), 
the u points lie east and west of elevation points, while the 
vpoints lie north and south of the elevation points .

Unstructured grids (Figure 5.4C) allow one to tile a domain 
using more general geometrical shapes (most commonly tri-
angles) that are pieced together to optimally fit details of the 
geometry. They are extremely attractive for ocean modelling, 
especially for coastal models, in which the high-quality rep-
resentation of geometrical features of a given domain is es-
sential, and from the numerical point of view they may reach 
a significant level of complexity (Griffies et al., 2000).

Besides their ability to better represent coastlines, unstruc-
tured grid approaches also offer the possibility to smoothly 
increase the resolution over a region of interest or depend-
ing on physical parameters (Sein et al., 2017). This is also pos-
sible with structured curvilinear grids (for example, see the 
BLUElink Australian prediction model grid in Brassington et 
al., 2005, and Figure 5.4A), though with likely more constraints 
on the grid deformation properties. However, in any of the 
two cases, numerical stability is dictated by the smallest grid 
element, which substantially increases the computational 
problem. An additional difficulty is that sub-grid parameter-
izations have to be valid throughout the domain, whatever 
the grid size and eddy resolution regime are (Hallberg, 2013). 
In the structured grid case, block structured refinement tech-
niques enable to circumvent some of the aforementioned 
difficulties by allowing a stepwise change (over a given grid 
patch) of the space and time resolutions (by integer factors, 
Figure 5.5B). Parameterizations and numerical schemes can 
also be changed accordingly. Grid exchanges can either be 
“one-way” if finer grids only receive information at their dy-
namical boundaries from the outer grid, or “two-way” if they 
also feed information back to the underlying mesh. In the 
latter case, data transferred at each model time step allows 
for a nearly seamless transition at the interface and possi-
bly guarantees perfect conservation of prognostic quantities 
(Debreu et al., 2012).

Several libraries do facilitate the implementation of block struc-
tured refinement. Among them, the AGRIF library (Debreu et al., 
2008) has been successfully used in HYCOM, MARS, NEMO and 
ROMS models. It is noteworthy that refinement techniques can 
eventually be adaptive, hence refinement regions can move 

Figure 5.3.		 The three Arakawa types of grids (adapted from Dyke, 2016).

Northwards current
Eastwards current
Elevation

Legend:

A) Arakawa A grid B) Arakawa B grid C) Arakawa C grid
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over the course of the model integration (Blayo and Debreu, 
1999). Resolution is in that case increased only where need-
ed, depending on a local numerical or physical criterion, to 
save computing resources. The use of AMR techniques in re-
alistic ocean models is nevertheless still poorly documented.

5.4.2.2.	Vertical discretization

The problem of vertical discretization is connected to phys-
ical processes that the modeler wants to resolve and it 
must address questions related to: a) the representation 
of pressure gradients; b) the representation of sub-grid 
scale processes; c) the need to concentrate the resolution 
in a specific region (e.g. the shelf, the coastal areas, etc.); 
and d) the comparison with observations. Griffies et al. 
(2000) distinguished among three traditional approaches 
(Figure 5.5):

•	 Depth/geopotential vertical coordinates;
•	 Terrain-following;
•	 Potential density (isopycnic) vertical coordinates.

Geopotential (z-) coordinates (Figure 5.5A) have been large-
ly used in ocean and atmospheric models because of their 
simplicity and straightforward nature for parameterizing 
the surface boundary layer. On the contrary, they are not able 
to adequately represent the effect of topography on the 
large-scale ocean models. Terrain-following coordinate sys-
tems (Figure 5.5B) are used especially in coastal applications, 
where bottom boundary layers and topography need to be 
well resolved. As z-coordinates, they suffer from spurious di-

apycnal mixing due to problems with numerical advection. 
In isopycnic vertical coordinates (Figure 5.5C), the potential 
density is referred to a given pressure. This system basically 
divides the water column into distinct homogeneous layers, 
which thicknesses can vary from place to place and from one 
time step to the next. This choice of coordinate works well for 
modelling tracer transport, which tends to be along surfaces 
of constant density. While both layered and isopycnal mod-
els use density as the vertical coordinate, there are subtle 
differences between the two types. Griffies et. al. (2000) and 
Chassignet et al. (2006), provide a discussion on the advan-
tages and disadvantages of each vertical coordinate system.

5.4.2.3.	Time stepping

Once the model is set from the spatial point of view and 
discretization in horizontal and vertical is defined, the time 
step for the computation needs to be considered as well. In 
the numerical schemes used to integrate the primitive equa-
tions, the time step must be small enough to guarantee com-
putational stability. The Courant-Friedrichs-Lewy criterion 
(CFL) is the stability condition that states that the velocity 
c at which the information is propagating at times the time 
step ∆t must be less than the horizontal grid spacing ∆x: 

(5.8)

where C is the Courant number and Cmax depends on the spe-
cific used scheme: explicit schemes allow to advance the solu-
tion to the next time level, one spatial grid point at a time, and 
are quite simple to implement (Kantha and Clayson, 2000); 

Resolution level 0
Resolution level 1
Resolution level 2

Legend:

A) Swiss cross B) Block-structured C) Unstructured

Figure 5.4.		 Possible ways to get a local increase of resolution: a) Progressive deformation of a structured 
grid; b) Block structured refinement; and c) Stretching of unstructured grid cells (adapted from Gerya, 2019).
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in an implicit time-stepping scheme, the solution at the next 
time level must be derived for all grid points simultaneously. 
These schemes are computationally more intensive, but are 
unconditionally stable, thus permitting larger time steps to be 
taken than would otherwise be required.

5.4.2.4.	Numerical techniques 

Three families of methods are available for discretizing the 
space derivatives that enters in the primitive equations: 

•	 Finite difference Method (FDM);
•	 Finite Volume Method (FVM);
•	 Finite Elements Method (FEM).

Here we provide an introduction to each method but for 
more detailed explanation refer to Hirsch, 2007.

The FDM is based on the properties of the Taylor expansions: 
it corresponds to an estimation of a derivative by the ratio of 
two differences according to the theoretical definition of the 
derivative, like the following:

(5.9)

If we remove the limit in Eq. 5.9, we obtain a finite difference: 
additionally, if ∆x is “small” but finite, the expression on the 
RHS of Eq. 5.9 is an approximation of the exact value of ux. 
Since ∆x is finite, an error is introduced, called truncation 
error, which goes to zero for ∆x tending to zero. The power of 
∆x with which this error tends to zero, is caller order of accu-
racy of the difference approximation and can be obtained by 
a Taylor series of u(x+∆x) around point x (Eqq. 5.10 and 5.11):

 
 

(5.10)

(5.11)

Equation 5.11 shows that:

•	 The RHS of Eq. 5.9 is an approximation of the first de-
rivative ux in the point x;
•	 The remaining terms in the RHS represent the error 
associated with this formula.

If we restrict the truncation error to its dominant term, that 
is the lower power of ∆x, we see that this approximation for 
u(x) goes to zero like the first power of ∆x and is said to be 
the first order in ∆x:

(5.12)

where O(∆x) is the truncation error.

The FVM is a numerical technique by which the integral for-
mulation of the conservation laws is discretized directly in 
the physical space. It is based on cell-averaged values, which 
makes this method totally different from FDM and FEM where 
the main numerical quantities are the local function values 
at the mesh points. For each cell, a local finite volume, also 
called control volume, is associated to each mesh point and 
applies the integral conservation law to this local volume. 
For this reason, the FVM is considered a conservative meth-
od. The essential property of this formulation is the presence 
of the surface integral and the fact that the time variation of 
a generic variable u inside the volume only depends on the 
surface values of the fluxes.

A) B) C)

ρ1

ρ2

ρn-1

ρn

Figure 5.5.		 Vertical grid types: a) depth/geopotential vertical coordinates; b) terrain-following; and c) poten-
tial density (isopycnic) vertical coordinates.
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The FVM requires:

•	 The subdivision of the mesh, obtained from the space 
discretization, into finite small volumes, one control vol-
ume being associated to each mesh point;
•	 The application of the integral conservation law to each 
of these finite volumes.

The FEM originates from the field of structural analysis and it 
has two common points with the FVM:

•	 The space discretization is considered a set of volumes 
or cells, called elements;

•	 It requires an integral formulation as a starting point 
that can be considered as a generalisation of the FVM.

The FEM requires:

•	 Discretization of the spatial domain into a set of ele-
ments of arbitrary shapes;
•	 In each element, a parametric representation of the 
unknown variables, based on families for interpolating 
or shape functions, associated to each element or cell 
is defined.

WebsiteNesting capabilitiesNumerical methodsGrid topologyModel

https://www.nemo-ocean.eu/ 

https://mitgcm.org/

https://www.croco-ocean.org/

https://sites.google.com/site/
shyfem/project-definition

https://fesom.de/

https://www.gfdl.noaa.gov/
ocean-model

http://ccrm.vims.edu/schism-
web/

https://mpas-dev.github.io/

https://www.hycom.org/ 

https://www.myroms.org/

http://fvcom.smast.umassd.
edu/

NEMO

MITgcm

CROCO

SHYFEM

FESOM

MOM

SCHISM

MPAS

HYCOM

ROMS

FVCOM

Structured grid

Structured grid

Structured grid

Unstructured grid

Unstructured grid

Structured grid

Unstructured grid

Unstructured grid

Structured grid

Structured grid

Unstructured grid

Finite Difference

Finite Difference

Finite Difference

Finite Element

Finite Element

Finite Volume

Finite Element

Finite Element

Finite Volume

Finite Volume

Finite Volume

Yes, with AGRIF

Yes

Yes, with AGRIF

Yes, with AGRIF

Yes, with AGRIF

Yes, with AGRIF

Table 5.1.	 List of available ocean models used from global to coastal scales.
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Such nice properties of the FEM as conservation of energy, that 
is common for all variational methods of solving differential 
equations, treatment of boundary conditions, and flexibility of 
irregular meshes have made them quite attractive, since they 
are also well suited to parallel computing. For this reason, it 
is considered as an interesting alternative to FDM commonly 
used in ocean modelling (Danilov et al., 2004).

5.4.3.	List of Ocean General Circulation Models

In Table 5.1, are summarised some of the most used ocean 
models that integrate numerically the primitive equations 
for a wide range of spatial domains, from global ocean to 
coastal scales.

5.4.4.	Downscaling large-scale solutions to 
regional/coastal circulation models

The need to resolve the small scales of ocean circulation in 
coastal seas, as well as the impracticability to run models at suf-

ficiently high resolution and detailed physics at global scales, 
led to the development of downscaling approaches for both the 
direct modelling and the data assimilation problems.

Two families of modelling approaches can be distinguished: 
(1) models running at global scales with mesh refinement 
in the coastal areas of interest; and (2) one-way or two-way 
nesting of coastal models into regional or global ones. In 
practice, the first one is achieved by setting variable-mesh 
grids, such as unstructured or curvilinear structured grids 
(as discussed in 5.4.2.1). To our knowledge, only 2D (i.e. baro-
tropic) unstructured models dedicated to storm surges and/
or tides modelling, such as the tidal atlas FES2014 (Lyard et 
al., 2021), are running over the global ocean and satisfy the 
resolution requirements in shallow waters. In the second 
approach, the large-scale global (or regional) model, i.e. 
the ‘parent’ model, provides open-boundary conditions to 
the coastal (‘child’) model; in case of two-way nesting, both 
models are coupled and the child model returns an estimate 
of the ocean state at its boundary, which is used in turn to 

Figure 5.6.		 Spectral nudging in the Gulf of Maine; top: spatial domain; bottom:  snapshots of sea surface 
temperature on 22 Jul 2012 from observations, global system, regional configuration and regional configuration 
with spectral nudging (from Katavouta and Thompson, 2016).
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force the parent simulation. General resolution issues for 
both approaches and practical considerations are discussed 
in Greenberg et al. (2007).

However, nesting methods do not just consist in repro-
ducing the large-scale solution with more details. Indeed, 
the child model may represent different processes from 
those solved by the parent model (e.g. tides, surface gravity 
waves, etc.) or may rely on different parameterizations or 
parameters. Besides, due to the strong nonlinearity of the 
ocean flow, the internal variability of the child model may 
decouple from that of the parent, leading to divergent solu-
tions (Katavouta and Thompson, 2016). Figure 5.6 shows an 
example of spectral nudging in the Gulf of Maine as in Kat-
avouta and Thompson (2016). The spatial domain is given in 
Figure 5.6-top: the black box represents the bounding box 
of the regional model GoMSS (NEMO, 1/36° horizontal reso-
lution), which is nested into the HYCOM+NCODA global 1/12° 
analysis system. GoMSS+ is the regional configuration with 
spectral nudging where temperature and salinity variables 
are directly updated. By adopting such a nesting approach, 
the regional configuration significantly improves the qual-
ity of the solution as shown in Figure 5.6-bottom: it rep-
resents the sea surface temperature snapshots for 22 July 
2012 based on satellite (“Obs”), the global system (“Global 
system”), the regional system (“GoMSS”), and that imple-
menting the spectral nudging (“GoMSS+”). The GoMSS+ 
exhibits an improved version of the coastal sea surface 
temperature representation, which is typical for a higher 
resolution model that takes into account coastal processes 
(e.g., tides). At the same time, it is able to capture the warm 
slope water and cold shelf waters as shown in the obser-
vations, which are well represented in the global model 
thanks to data assimilation. For further details, please refer 
to Katavouta and Thompson (2016).

In 2007, the GODAE Coastal and Shelf seas Working Group 
(De Mey et al., 2007) noted that: “It is becoming increasing-
ly clear that specifying the offshore boundary conditions of 
coastal models by using forecasts from a hydrodynamical 
large-scale ocean model has the potential (1) to provide bet-
ter local estimates by adding value to GODAE products, (2) to 
extend predictability on shelves, and (3) to enhance the rep-
resentativeness of local observations.” Despite considerable 
efforts since 2007 on both coastal modelling capabilities and 
nesting methods, downscaling still raises obvious numerical 
and physical issues. In the following paragraphs an attempt 
has been made, but not exhaustively, to present the various 
difficulties that arise and the solutions found in the litera-
ture to address them. 

The coastal ocean is subject to both local (e.g. atmosphere, 
river mouths) and remote forcings (e.g. astronomical poten-
tial, coastal waveguide, wind fetch, biogeochemical connec-
tivity). Therefore, the boundaries of a coastal model, which 

also intercept strong bathymetry gradients, play a critical 
role. In addition, solving primitive equations on a limited 
area domain with OBC does not lead to a unique physically 
realistic solution. Consequently, a variety of ad hoc methods 
to set-up practical OBC have been developed with a depen-
dence upon flow dynamics, model resolution, types of infor-
mation at the open boundaries, etc., as reviewed by Blayo 
and Debreu (2005). A simple view of the OBC issues consists 
in viewing the problem because of inconsistencies between 
the parent and child models which, as mentioned previously, 
arise due to different physics of the model, to different forc-
ing (e.g. atmospheric, runoff, bathymetry), and to truncated 
information at the open boundary. The last refers to the fact 
that the parent information is provided as discrete fields in 
space and time (e.g. daily or hourly averages); high-frequen-
cy motions are therefore filtered out or aliased.

The example of tides is particularly enlightening on these 
limitations. Even though the parent model resolves tides, 
forcing the child with the parent tidal waves (either baro-
tropic or both barotropic and baroclinic) implies the avail-
ability of the large-scale forcing at very high frequency (a few 
minutes). In practice, especially for operational systems, this 
is very difficult to achieve as it requires huge storage capaci-
ties. Therefore, coastal models are usually forced by low-fre-
quency dynamics and tidal constituents, both of which not 
necessarily stemming from the same parent models (tidal 
constituents are often chosen from accurate global tidal at-
lases). Herzfeld and Gillibrand (2015) noted that conditions 
for incoming tidal waves may be reflective for the low-fre-
quency external data and propose OBC based on dual relax-
ation time scales. Furthermore, the difference of bathymetry 
and representation of the coastline between the parent and 
child models may lead to large inconsistencies between the 
tidal solutions in both models, with a risk of spurious pat-
terns developing in the coastal domain close to the open 
boundaries (e.g. rim currents). Toublanc et al. (2018) pro-
posed a simple approach that reduces such inconsistencies 
by pre-processing the tidal forcing using a 2D simulation with 
a dedicated 2D tidal model. At last, filtering out the high-fre-
quency 3D incoming information by using for instance hourly 
or daily averages from the parent simulation, may lead to a 
loss of energy in the coastal domain, in particular because of 
the missing internal waves forcing, as recently evidenced by 
Mazloff et al. (2020).

Another difficulty in one-way nesting arises from the possibil-
ity that the child model develops an internal variability that 
diverges from the parent’s one. In many operational systems, 
global or large-scale solutions stem from a data assimilation 
system in which the mesoscale dynamics are constrained by 
satellite data (e.g. altimetry). If no data assimilation is per-
formed in the coastal domain, the developing mesoscale (and 
a fortiori submesoscale) may deviate from reality leading to 
the undesirable case in which the parent solution is closer 
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to observations at large-scale and mesoscale than the child. 
Sandery and Sakov (2017) report that even with data assim-
ilation, increasing the resolution does not automatically im-
prove the skill of the forecast, because of the inverse cascade 
of unconstrained submesoscale towards mesoscale. Methods 
such as spectral nudging are developed to ensure that the 
large-scale patterns, e.g. eddies or meandering jets that are 
accurately represented in the parent model, are maintained 
in the child; an example of such method can be found in Kat-
avouta and Thompson (2016).

A last but not least issue concerns quantifying the errors in 
the child simulations due to the nesting process. The errors 
originate from the OBC scheme (numerical implementation 
and physical assumptions) and from the uncertainties on the 
parent forcing fields. In the latter case, the question is how the 
parent model errors are downscaled. Ensemble approaches 
can help to characterise and estimate the downscaling of par-
ent errors, as for instance explored in Ghantous et al. (2020).

Figure 5.7 shows an example of ensemble downscaling of a 
coastal ocean model (Symphonie model, 500 m resolution) 
for the south-east Bay of Biscay in an ensemble of a region-
al model (NEMO, 1/36°) (Ghantous et al., 2020). Figure 5.7a 
presents the regional domain, in particular the parent do-
main over the map, while the blue box is the domain of the 
child model. Figures 5.7b-d show the ensemble spread (stan-
dard-deviation) in sea surface height (SSH) in the domain of 
the child model for ensembles of 50 members. In particular, 
Figure 5.7b is the parent ensemble, generated by perturbing 
the wind in the parent domain; Figure 5.7c is the child ensem-
ble, generated by perturbing the wind in the child domain; 
Figure 5.7d is the child ensemble generated by perturbing 
both the wind and the OBC conditions (the OBC perturbations 
stem from the parent ensemble). The numerical experiment 
reveals that, on average over the period of study, the spread 
in SSH is greatest where the mesoscale eddies are present (in 
the deeper area of the domain). It also reveals that the con-
tribution from the OBC uncertainties is larger than the impact 

Figure 5.7.		 A case study in the south-east Bay of Biscay: a) bathymetry of the parent model and bounding 
box (black box) of the child domain; ensemble spread in SSH over 3 months period (Jan-Feb-Mar) from 50 en-
semble members perturbing; b) wind in parent model; c) wind in the child domain; and d) wind and OBC in the 
child domain (from Ghantous et al., 2020).
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of local wind uncertainties. It is a valuable result for the next 
generation of ensemble data assimilation systems.

An example of nesting capacities of circulation modelling in 
short-term forecast is shown in Figure 5.8. This is the result 
of downscaling the Copernicus Marine Service Iberia-Bis-
cay-Ireland – Monitoring and Forecasting Centre (IBI-MFC, 
🔗1) product on a higher spatial grid; in the bottom panel it 
can be seen a detail of surface currents in the Gulf of Cadiz 
and Alborán Sea.

1. https://resources.marine.copernicus.eu/product-detail/
IBI_ANALYSISFORECAST_PHY_005_001/INFORMATION

The downscaling approach is extremely powerful to allow 
the modeller to set up an OOFS at high resolution, and every 
OOFS may be used to build another OOFS in a seamless way. 
In Section 5.9 can be found an initial but exhaustive list of 
OOFSs’ providers from which the modeller may select to nest 
her/his new OOFS.

Figure 5.8.		 Gulf of Cadiz and the Alborán Sea: example of downscaling capacities. Source: Puertos del Estado 
and Universidad de Málaga.
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5.5.	 
Data assimilation systems 
An introduction to the data assimilation concept can be found 
in Section 4.3. This Section focuses on the numerical charac-
teristics of the DAS largely used in circulation modelling.

5.5.1.	 Basic concepts

In ocean forecasting the objective is to produce an es-
timate xa of the true state xt of the ocean at initial time 
to initialise forecasts. Ide et al., 1997, De Mey-Frémaux et 
al. (1998), and Bouttier and Courtier (2002) provide an ex-
tensive introduction to DAS basic concepts and herein are 
recalled and summarised. 

DA consists in calculating the «best» estimate of the state of 
a physical system, of its evolution in time, given observations 
and a prognostic numerical model.

The basic objective information that can be used to produce 
the analysis is a collection of observed values provided by 
observations of the true state. If the model state is overde-
termined by the observations, then the analysis is reduced 
to an interpolation problem. In most cases the analysis prob-
lem is under-determined because data are sparse and only 
indirectly related to the model variables. In order to make it 
a well-posed problem, it is necessary to rely on some back-
ground information in the form of an a priori estimate of the 
model state. 

A discrete model for the evolution of the ocean from ti to t i+1 
is governed by the following Eq. 5.13:

(5.13)

where x is the so-called state vector (velocities, temperature, 
salinity, etc., at model grid positions) and M is the corre-
sponding dynamics operator. The state vector has dimension 
n. The dynamic operator in Eq. 5.13 is commonly non linear 
and deterministic, while the true ocean state may differ from 
Eq. 5.13 by random and systematic error. 

Observations yo
t at time ti are defined by Eq. 5.14:

(5.14)

where H is an observation operator and ϵ is a noise process. 
The observation vector has dimension pi. A major problem 
of data assimilation is that typically pi<<n. The observation 
operator H can be also non-linear like M and both can con-
tain explicit time dependence in addition to the implicit de-

pendence via the state vector x f
i ≡ xf(ti). The noise process 

ϵ is commonly used to have zero mean and we denote its 
covariance matrix by R: it consists of instrumental and rep-
resentativeness errors which covariance matrices are E and 
F, respectively, with R=E+F.

The key of the analysis is the use of discrepancies between 
observations and state vector:

(5.15)

When calculated with the background xb it is called innova-
tions and with the analysis xa analysis residuals.

In the following, we present two data assimilation types of ap-
proaches: the sequential methods and the variational methods.

5.5.2.	Sequential methods

Several schemes have been proven useful and implement-
ed using a sequential-estimation approach including the 
Bluelink Ocean Data Assimilation System (BODAS) (Oke et 
al., 2008) and the Singular Evolutive Extended Kalman (SEEK) 
filter (Pham et al., 1998). An extensive literature is available 
on related methods, such as OI (Daley, 1991), EnOI, and EnKF 
(Evensen, 2003).

Following Ide et al., (1997), the true ocean fluid xf is assumed 
to differ from that of the numerical model (Eq. 13) by sto-
chastic perturbations:

(5.16)

where η is a noise process with zero mean and covariance 
matrix Q. The EKF consists of a forecast step based on pre-
viously obtained state variables, which include previous as-
similation steps, x f(ti+1) and an updated probability function 
described by P f(ti):

(5.17)

(5.18)

The core of the Kalman Filter method is an update step in 
which the observations available at time i is blended with 
the previous information, taking account of their joint prob-
ability distributions and carried forward by the forecast step:

(5.19)
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(5.20)

where the observation residual or innovation vector is de-
fined by:

(5.21)

The Kalman gain Ki is defined by:

(5.22)

The innovation vector di is evidently a displacement of the 
modelled forecast toward the observed data, scaled by the 
Kalman gain. The Kalman gain accounts for the weighting re-
quired by the joint probability function for the model and 
observation variability. In practice, various simplifications 
are introduced to describe P to overcome the computational 
burden involved in the matrix calculation (Oke et al., 2008; 
Pham et al., 1998).

Another example is the OI that is quite frequently used in 
oceanography and meteorology. It is a particular subopti-
mal filter, in which the EKF’s error covariance matrix Pf is 
replaced by an approximation, B, computed as a product 
of variances placed in the diagonal matrix D and of cor-
relations placed in a matrix C with unit diagonal (Ghil and 
Malanotte-Rizzoli, 1991):

(5.23)

The state vector is still given by Eq. 5.13. The OI gain writes:

(5.24)

where HiB f (ti)HT
i is evaluated from the correlation model, 

and the state update is given by:

(5.25)

5.5.3.	Variational methods

Several schemes have been implemented using variational 
methods such as 3D-Var, e.g. the Navy Coupled Ocean Data 
Assimilation (NCODA) (Cummings, 2005) and the Forecasting 
Ocean Assimilation Model (FOAM) (Martin et al., 2007). 4D-Var 
methods are used extensively in Numerical Weather Predic-
tion and are one of the future directions for ocean prediction 
systems. The NEMOVAR system (Mogensen et al., 2012) is able 
to handle both categories of variational approaches for the 
NEMO modelling system.

Following Ide et al. (1997), 4D-Var minimises the objective 
function J that measures the weighted sum of distance Jb to 
the background state xb and Jo to the observation yo distrib-
uted over a time interval [t0 , tn ]:

 
(5.26) 

where yi ≡ Hi[x(ti)]. Here B-1 is an a priori weight matrix, with 
B meant to approximate the error covariance matrix xb, and 
a minimization is done with respect to the initial state x(t0). 

Equation 5.25 reflects the imposition of a strong constraint 
(Sasaki, 1970). Alternative formulations based on a weak 
constraint are given by Bennett (1992) and by Menard and 
Daley (1996). Efficient methods for performing the minimi-
zation of J require its partial derivatives with respect to the 
elements of x(t0) given by:

 
(5.27) 

where:

(5.28)

This follows from:

(5.29)

 
(5.30)

M(ti+1 , ti)T is usually called adjoint model and HT
i is the ad-

joint observation operator. 4D-Var reduces to three-dimen-
sional variational assimilation (3D-Var) if the time dimension 
is taken out.

Figure 5.9 shows an example of 4D-Var capacity: xa is used as 
the initial state for a forecast, then by construction of 4D-Var 
one is sure that the forecast will be completely consistent with 
the model equations and the 4D distribution of observations 
until the end of the 4D-Var time interval n (the cutoff time).
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5.5.4.	Modelling errors

As reported in Bouttier and Courtier (2002), to represent the 
fact that there is some uncertainty in the background and in 
the analysis, we need to assume some model of the errors 
between these vectors.

Given a background field xb just before doing an analysis, we 
define the vector of errors that separates it from the true state:

(5.31)

If we are able to repeat each analysis experiment a large 
number of times, under exactly same conditions but with 
different realisation of errors generated by unknown caus-
es, b would be different every time. It can be represented 
through a probability density function (PDF), able to provide 
all statistics, including the average (or expectation) -b and 
the variances. A popular model of scalar pdf is the Gaussian 
function, that can be generalised to a multivariate PDF.

The errors in the background and in the observations are 
modelled as follows:

•	 Background errors. They are the estimation errors of 
the background state, given by the difference between 
the background state vector and its true value;
•	 Observation errors. They contain errors in the obser-
vation process (i.e instrumental errors), errors in the 
design of the operator H, and representativeness errors 
(i.e. discretization errors which prevent x t from being a 
perfect image of the true state;

•	 Analysis error. Defined through the trace of the cova-
riance matrix A:

(5.32)

They are the estimation errors of the analysis state, which 
is what we want to minimize. In a scalar system, the back-
ground error covariance is the variance:

(5.33)

In a multidimensional system, B is a square symmetric ma-
trix with n×n dimension. The diagonal of B contains the vari-
ances, while the off-diagonal contains the cross-covariances 
between a pair of variables in the model. The off-diagonal 
terms can be transformed into error correlations:

 
(5.34) 

The error statistics are functions of the physical processes 
governing the meteorological or the ocean state and the ob-
serving network. They depend on a priori knowledge of the 
errors: variances reflect our uncertainty in features of the 
background or the observations. To estimate statistics, it is 
necessary to assume that they are stationary over a period 
and uniform over a domain, so that one can take a number of 
error realisations and make empirical statistics.

Figure 5.9.		 Example of 4D-Var intermittent assimilation in a numerical forecasting system (adapted from 
Bouttier and Courtier 2002).
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In setting a DAS, the estimated statistics is very difficult and 
we can rely on diagnostics of an existing data assimilation 
system using the observational method.

5.5.5.	Overview of current data assimilation 
systems in operational forecasting

Data assimilation techniques, schematically introduced in 
previous paragraphs and that are widely documented in 
Daley (1991), Evensen (2003) and Zaron (2011), represent the 
baseline of the modelling framework with general circula-
tion models for operational forecasting and reanalysis. At 
international level, the GODAE’s OceanView (Bell et al., 2015) 
and OceanPredict initiatives have promoted strong syner-
gies with GOOS, ETOOFS and GEO BluePlanet contributing to 
a value chain from observations, data, information systems, 
predictions, and scientific assessments to end users, with 
the aim to promote the use and impact of observations and 
ocean predictions for societal benefit, and increasing visibil-
ity of operational oceanography advances.

Martin et al. (2015) presents an overview of the main character-
istics of the data assimilation used in each GODAE OceanView 
systems; this is a list of the adopted numerical techniques:

•	 Bluelink (Oke et al., 2013) adopts MOM4 ocean model 
and EnOI algorithm;
•	 GIOPS (Smith et al., 2016) uses NEMO ocean model 
and SEEK (with fixed basis) for the ocean component, 
and 3DVar for assimilation in the ice component;
•	 ECMWF (Balmaseda et al., 2013) uses NEMO ocean 
model and 3DVar for the assimilation component (+ 
bias correction technique);
•	 FOAM (Waters et al., 2014) uses NEMO ocean model 
and 3DVar for the assimilation component (+ bias cor-
rection technique);
•	 GOFS (Cummings and Smedstad, 2013) uses HYCOM 
ocean model with 3DVar data assimilation scheme;
•	 Mercator Ocean (Lellouche et al., 2013) uses NEMO 
ocean model with SEEK-FGAT (with fixed basis) and 3DVar 
bias correction;
•	 MOVE (Usui et al., 2006) uses MRI COM model and 
3DVar data assimilation scheme;
•	 TOPAZ (Sakov et al., 2012) uses HYCOM with EnKF 
techniques.

Description of the operational initiatives is also provided at GO-
DAE OceanView website (🔗2) and OceanPredict website (🔗3).

5.6.	 
Ensemble modelling 
Numerical models, applied to nonlinear dynamical systems 
such as the ocean, inevitably approximate the solution of the 
so-called Navier-Stokes shallow-water equations, because of 
limitations in computer power to resolve the whole spectrum of 
geophysical processes. In addition, numerical modelling is sub-
ject to numerous inherent uncertainties related to modelling 
parameters, to forcing functions, to initial and boundary con-
ditions. This is why a single forecast is, to some extent, uncer-
tain, and we use ensemble modelling to answer how uncertain 
a forecast is. Ensemble prediction systems (EPS) are well-known 
in atmospheric science communities for more than 25 years 
(Palmer, 2018) but are more recent in operational oceanography, 
with marked advances in the last decade (e.g., TOPAZ system, 
Sakov et al., 2012). EPS uses ensemble modelling and adds other 
components, such as probabilistic outputs and soon machine 
learning under varying flavours, with prediction as objective. In 
most cases, EPS also incorporates ensemble-based data assim-
ilation (DA) to decrease forecast errors.23

2. https://www.godae-oceanview.org/
3. http://oceanpredict19.org

Due to the chaotic nature of the ocean, the probabilistic ap-
proach is an interesting alternative beyond the classic deter-
ministic approach, and it can help users to interpret model 
predictions supplemented by their uncertainties. Ensemble 
modelling consists of possible ocean states using Monte Carlo 
techniques to sample the probability density function (pdf) of 
the model forecast. Each model simulation is called an ensem-
ble member. This approach is illustrated in Figure 5.10a. The en-
semble is initialised by a sample of different initial conditions 
(e.g. perturbed analyses in DA). The model operator (which can 
be also perturbed during integration) is then used to bring for-
ward in time each member and produce an ensemble of model 
simulations. The ensemble members may diverge radically or 
remain broadly similar, resulting in a forecast PDF. A quanti-
tative assessment of the ensemble is depicted in Figure 5.10b. 
The ensemble mean and spread (estimating model uncertain-
ty) are calculated as first and second order statistical moments 
from the members, and can be compared with the unperturbed 
deterministic simulation and the climatology (and to observa-
tions, if available). The ensemble spread is flow-dependent 
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Figure 5.10.	 (a) Schematic of an ensemble simulation with equiprobable forecasts (blue trajectories); the 
forecast pdf gives an indication of the likelihood of occurrence of the different states; (b) Schematic of the 
flow-dependent ensemble spread in relation to the ensemble mean, an individual member, the unperturbed 
deterministic run, and the climatology (credits: 🔗4).

and varies for different state variables. Ensemble forecasting 
aims at quantifying this flow-dependent uncertainty. EPS are 
highly demanding systems in terms of computational resourc-
es and can be run efficiently in HPC facilities. A major challenge 
for the next generation of OOFSs is to improve their services by 
integrating ensemble capabilities in their systems.

5.6.1.	 Basic concepts

There are three main categories of ocean model ensembles: 
(a) multi-model ensembles, e.g. Copernicus Marine Service 
multi-model products and CMIP6 coupled models for climate 
studies 4(🔗5); (b) stochastic model ensembles, used in re-
search e.g. the OCCIPUT project (Penduff et al., 2014), and less 
frequently in operational oceanography due to their computa-
tional cost; and (c) ocean model response to an atmospheric 
EPS, e.g. using the ECMWF-EPS atmospheric forcing(🔗6). 

4.https://confluence.ecmwf.int/
5. https://www.wcrp-climate.org
6. https://www.ecmwf.int/en/forecasts

The focus here is on the practical aspects for the implemen-
tation of a stochastic ocean model, mainly for short- to me-
dium-range forecasting applications. The notion “stochastic 
model” for a system exhibiting chaotic behaviour can be de-
fined by the partial differential Fokker-Planck equation, de-
scribing the temporal evolution of the state pdf, controlled by 
stochastic diffusion and advection processes, and local model 
tendencies. Stochastic modelling is used to represent mod-
el errors and as an ulterior step can be integrated in ensem-
ble-based DA. Several methods and tools to produce stochas-
tic model ensembles have been discussed in the literature 
following the SANGOMA project (🔗7). 

The main objectives of (ensemble) stochastic modelling are: 
(a) the estimation of model uncertainties providing realis-
tic error bars and confidence intervals at useful ranges for 
ocean predictions; and (b) using model uncertainties in a 
DA framework to enrich background error covariances with 
flow-dependent errors and improve model prediction at the 
range of the outer loop of the DA scheme. The most useful 

7. http://www.data-assimilation.net
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statistical properties are the ensemble mean, the covarianc-
es and spread given by the diagonal of the covariance matrix, 
and sometimes the higher order moments (Quattrocchi et al., 
2014). Stochastic ensembles are not used solely for DA but 
can be applied also as a machine learning base for artificial 
intelligence applications, guiding observational strategies 
based on array design (Charria et al., 2016; Lamouroux et al., 
2016), and enabling probabilistic forecasting (Cheng et al., 
2020), e.g. occurrence of ocean upwelling or bloom events, 
occurrence of sea level and storm surge exceeding a particu-
lar threshold, sea ice concentration, etc.

The main elements to be decided and identified when gen-
erating an ocean model ensemble are: (a) the relevant quan-
tities to perturb; (b) the stochastic parameterizations; and 
(c) the dynamical balances that must be preserved, if any 
(which in turn influence choices in (a)). These notions are of-
ten combined under the term “stochastic physics”.

The ensemble verification is an important integral part of the 
ensemble modelling and EPS-developing process. An ensem-
ble empirical consistency aims at verifying a posteriori the 
model pdf approximated by the ensemble of forecasts, with 
respect to existing observations and their pdfs. The under-
lying notion is the model and data joint probability on the 
right-hand-side of the equal sign in the Bayes theorem. Em-
pirical consistency can be explored by specific criteria and 
analysis tools, e.g. from rank histograms being the simplest 
measuring “reliability” (Candille and Talagrand, 2005) to Des-
roziers et al. (2005) consistency diagnostics on innovations 
and ensemble pattern-selective consistency analysis (Verva-
tis et al., 2021a). The “reliability” measures to which degree 
the forecast probabilities agree with outcome frequencies 
and is an important attribute for the development of prob-
abilistic scores. Such scores are for example the Continuous 
Rank Probability Score (CRPS) (Hersbach, 2000; Candille and 
Talagrand, 2005) and the Brier Score measuring, in addition 
to “reliability”, the attribute of “resolution”. For a reliable 
EPS, “resolution” is the ability to separate cases when an 
event occurs or not, i.e. probabilities being close to 0 or 1. 
The ensemble consistency evaluation framework provides 
important information to test the relevance of an EPS when 
the system is set-up (e.g. the ensemble size).

5.6.2.	Ocean model uncertainties

Ocean model uncertainties emerge from sources of errors rel-
evant to the ocean state, including physics, biogeochemistry, 
and sea ice, as well as errors in the initial state and boundary 
conditions (i.e. atmospheric forcing and lateral open bound-
ary conditions). Model uncertainties in ocean physics have 
a significant impact in all other system components as, for 
example, in biogeochemistry and sea ice. The choice of the 
perturbed model quantities depends: (a) on the ocean ap-
plication, e.g. global vs regional and coastal configurations, 

and short- to medium- or seasonal-range forecasts; (b) on 
the processes resolved by the model (or not, such as sub-
grid scale processes); (c) on choices in the DA framework, e.g. 
variational and Kalman filter approaches, variables and pa-
rameters included in the control vector, assimilated observa-
tions etc.; and (d) on the dynamical balances the user wants 
to preserve in the perturbation space, e.g. leaving velocities 
unperturbed tends to preserve the degree of geostrophy of 
the ocean state.

Recent advances in NEMO incorporated an easy-to-use mod-
elling framework for the production of ocean model ensem-
bles (Brankart et al., 2015), including the following schemes 
applied also in NWP systems: SPPT (Buizza et al., 1999), SPUF 
(Brankart, 2013), SPP (Ollinaho, et al., 2017) and SKEB (Berner 
et al., 2009). The stochastic parameterizations in all schemes 
are implemented via first-order autoregressive Markov pro-
cesses, i.e. a statistical model based on the assumption that 
the past value of uncertainty determines the present with-
in some error. Several studies expand the NEMO ensemble 
framework (Bessières et al., 2017; Vervatis et al., 2021b), in-
corporating a stochastic ocean physics package (Storto and 
Andriopoulos, 2021).

The SPPT perturbs the net parameterized model tendencies, 
assumed to contain upscaled ocean model errors due to sub-
grid parameterizations. The SPUF scheme is based on random 
walks sampling gradients (which represent the sub-grid unre-
solved scales) from the state vector and adding them to the 
models’ solution; the random walks consist of independent 
consecutive steps in all directions. The SPP introduces per-
turbations at each time step to parameters within the model 
parameterization schemes. The SKEB adds perturbations to 
the barotropic stream function, upscaling a fraction of the dis-
sipated energy back to the resolved flow, which is often useful 
assuming that the inverse cascade of energy is underestimat-
ed in ocean models due to unresolved sub-grid processes.

Selecting the appropriate perturbation scheme and properly 
tuning the stochastic parameterizations for the autoregressive 
processes (for each of the perturbed model quantities) are es-
sential steps to produce meaningful stochastic ensembles. All 
stochastic perturbation schemes have their advantages and 
disadvantages (e.g. energy and mass conservation laws, pro-
duction of over/under-dispersive ensembles, etc.), though the 
SPPT scheme appears to be the most effective (in terms of gen-
erating sufficient model spread) and easiest to use (in terms of 
stochastic parameterizations) for many model quantities.

A common approach to generate stochastic ocean model en-
sembles is by using a pseudorandom combination of multivar-
iate empirical orthogonal functions (EOFs) to perturb the wind 
forcing (Vervatis et al., 2016). The wind has a large impact on 
upper-ocean model uncertainties because it controls the Ek-
man and geostrophic components of the Sverdrup dynamics; it 
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also largely drives the shelf-seas dynamics in addition to tides. 
In general, all surface atmospheric forcing variables constitute 
major sources of ocean model uncertainties. Momentum, heat, 
and freshwater fluxes are key quantities coupling the air-sea 
processes and are parametrized in terms of bulk coefficients. 
These model parameters can also be stochastically perturbed 
(in addition to atmospheric forcing) with spatiotemporal vary-
ing patterns (or by applying simple Gaussian noise, if there is no 
information available regarding their scales).

Complementary to stochastic approaches, ocean model 
uncertainties can be introduced by making use of an at-
mospheric ensemble. Using an atmospheric EPS does not 
necessarily outperform the stochastic modelling approach 
in terms of ocean model spread. In general, it takes longer 
for the ensemble to spin-up and increase its spread, and the 
method also requires a large amount of data to process. On 
the other hand, the main advantage of using an atmospheric 
EPS is the realism of the fields in terms of conserved quan-
tities. A common approach of a marine EPS generated by an 
atmospheric EPS, used successfully at operational centres, is 
the ocean wind-wave ensemble forecasting (Janssen, 2004).

In the ocean interior below the seasonal thermocline, model 
uncertainties can be introduced effectively by perturbing the 
ocean boundary conditions and the water column proper-
ties. Such perturbations are usually difficult to implement 
because of the need to ensure physical consistency in the 
water column, and because errors in the prescribed bound-
ary fields are usually unknown. A favourable solution for 
the open boundaries is when a coarse parent ensemble is 
available providing uncertainty estimates to the nested child 
model (Ghantous et al., 2020).

Methods incorporating polynomial chaos expansions along 
with EOF-based perturbations of temperature and salinity 
profiles in isopycnal coordinate space, can be applied effi-
ciently in estimating model error propagation in the open 
boundaries (Thacker et al., 2012). Model uncertainties affect-
ing also the water column properties can be applied in the 
equation of state by perturbing the temperature and salinity 
state, using the SPUF method aimed at representing sub-grid 
unresolved scales. Other quantities that can be perturbed in 
the ocean interior and its boundaries are the model bathym-
etry influencing the barotropic and baroclinic states (Lima et 
al., 2019), the bottom drag coefficient affecting the bottom 
Ekman flow transport and tidal mixing in shelf-seas (Vervatis 
et al., 2021b), and the SSH together with depth integrated ve-
locities in tidal open boundaries (Barth et al., 2009).

Inflation methods and bred vectors for short-range ocean 
prediction systems can be used to initialise an ensemble of 
forecasts. The choice of perturbing initial conditions is also 
relevant to DA, for example using ensemble-based hybrid vari-

ational methods such as the 4D-EnsVar controlling (possibly 
among other quantities) the initial conditions.

Ensemble-based DA methods are used to improve the predic-
tive skill of biogeochemical and sea-ice models. In these Earth 
system components, model errors stem from unresolved diver-
sity, unresolved scales, and multiple model parameterizations. 
The unresolved diversity refers for example to the biodiversity 
restriction, including only a few species in the biogeochemical 
model, and to restrictions in the categorization of sea-ice in 
an effort to reduce complexity and state variables. These di-
versity restrictions often lead to missing model processes that 
are instead approximated by parameterizations. On the other 
hand, the unresolved scales depend on the model resolution 
(in a way similar to the unresolved scales for physics).

In this context, the most common quantities to perturb in 
biogeochemical models are the sources and sinks (e.g. pho-
tosynthesis, respiration, death, and grazing), and the biogeo-
chemical parameters controlling some of these processes (e.g. 
growth and mortality rates, nutrient limitations, grazing, etc.) 
(Santana-Falcón et al., 2020). Other biogeochemical model 
state uncertainties depend on the water column optical prop-
erties and the penetrative solar radiation, affecting photosyn-
thesis and primary production (Ciavatta et al., 2014). An ana-
morphosis transformation in lognormal space is required for 
any use of the stochastic biogeochemical outputs that involve 
Gaussian distributions, such as variance analysis or DA (Simon 
and Bertino, 2009). This latter attribute of selecting a posi-
tive distribution function to introduce model uncertainties is 
also followed for sea-ice perturbations, e.g. using a gamma 
distribution for the sea-ice strength variable to improve DA 
and model performance for sea-ice concentration and sea-ice 
thickness (Juricke et al.,  2013).

5.6.3.	Towards ocean EPS

A summary of the practical aspects and challenges of a road-
map towards ocean probabilistic forecasting for the next gen-
eration of OOFS is as follows. Initially, ensemble forecasting 
should be developed and tested without the use of DA. This 
will allow operational centres to coordinate their activities, 
such as: (a) preparing OGCM platforms for the production of 
ensembles, e.g. several choices among regional centres tuning 
the stochastic parameterizations; (b) integrating ensembles 
in their operational chain assessing the computational cost 
(doubled for DA) and which variables are essential to archive; 
and (c) providing tools for the interpretation of uncertainty 
estimates as well as guiding users to extract information from 
ensembles, e.g. ocean indices for the probabilistic detection of 
events. An open issue in this first step, without DA, is how en-
sembles are going to be initialised in an operational context. 
In a second step, within a DA framework, the initialization of 
the ensemble is part of the DA process.
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5.7.	 
Validation strategies
As explained in Section 4.5.2, four classes of metrics (Figure 
4.30) were defined and adopted by GODAE OceanPredict and 
have been extensively used for the validation of OO mod-
el products since the first validation and intercomparisons 
exercises (Crosnier and Le Provost, 2007; Ryan et al., 2015). 
It is indeed necessary to use a complete range of statistics 
and comparisons in space and time to properly assess the 
consistency, representativeness, accuracy, performance, and 
robustness of ocean model outputs. One of the first steps at 
all stages of the validation procedure is usually to compare 
the surface temperature (analysed, and at various forecast 
length) with contemporaneous satellite observations, which 
is a good example of CLASS1 metrics (Figure 5.11). Sea surface 
temperature is a signature of ocean-atmosphere interactions 
and it is critical for many maritime applications, while be-
ing one of the major sources of uncertainty for ocean mod-
el analyses and forecasts. This type of comparison allows a 
day-to-day control of atmospheric forcing inconsistencies 

and large scale features of the systematic biases can also be 
monitored on the longer terms.

Another important step is to check the local behaviour of 
the model analyses and forecast for several time frequencies 
(tidal, non-tidal) using fixed buoys observations, for instance 
for sea surface height against tide gauges (CLASS2 metrics, 
Figure 5.12). This type of metrics is essential for the overall 
assessment of the representativeness of a physical model 
solution. Many statistical estimators can be used to compare 
models to observations within this CLASS1 and CLASS2 frame-
work, but also spectral analysis, extreme events characteri-
zation, and mesoscale feature detection can be performed at 
this stage. This surface “satellite” approach (2-dimensional 
with time) and local approach (1-dimension with time) must 
be combined with the monitoring of the basin scale or global  
scale behaviour of the ocean, integrated in space (3-dimen-
sions) and/or time, such as the validation and intercomparison

Figure 5.11.	 Copernicus Marine Service global model SST analysis minus gridded supercollated SST observa-
tions on 03/30/2021 (°C).
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8.https://marine.copernicus.eu/access-data/ocean-monitor-
ing-indicators/mean-heat-transport-across-sections

Figure 5.12.	  Correlation (left) and RMS difference (cm)(right) between the Iberia-Biscay-Ireland model 
analyses by Copernicus Marine Service and the observations of the residual elevation at tide gauges´ locations 
(January 2017 to December 2018) (courtesy of Bruno Levier, Mercator Océan).

Figure 5.13.	  Heat transport (PW) from Copernicus Marine Service global reanalysis ensemble product (🔗8) 
compared with estimates of Lumpkin and Speer (2007). Uncertainty ranges are derived from the ensemble 
standard deviation. Arrows indicate the direction of the mean flow through the sections.
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of ocean monitoring indicators. The intercomparison of inte-
grated heat transports (CLASS3 metrics, Figure 5.12) with val-
ues from the literature (Lumpkin and Speer, 2007) is a good 
example of diagnostic which can help identify biases, drifts 
or limitations in the model’s representation of the ocean cir-
culation, while it also provides valuable information on the 

ocean state and variability. Additionally, the intercompari-
son of several model estimates, whenever possible, allows 
to derive a range of likely values for ocean monitoring indi-
cators, and to assess the robustness of the model solution.  
In Figure 5.13 the standard deviation between four ocean re-
analyses (varying in their configuration and data assimilation 

Figure 5.14.	  Performance of GODAE OceanPredict global forecasting systems, in terms of global mean depar-
tures from salinity in-situ profiles observations (psu) in the 0-500m layer. The time evolution of the mean bias 
between the model forecast (12h) and the observations is shown by dotted lines, and the root mean square 
difference is shown by solid lines (courtesy of Charly Régnier, Mercator Ocean).

Figure 5.15.	  Results of a Lagrangian experiment. Panels: a) the metric corresponds to the distance sepa-
rating the true position of the particle in NR with that of the OSSE1 (3Nadir) after 7 days, averaged in 5-de-
gree bins; b) and c) show the average change in separation distance (reduction in blue) obtained when using 
instead OSSE2 and OSSE3 surface currents, with an overall improvement; and d) global distributions of the 
separation distance in each experiment (courtesy of Simon van Gennip, Mercator Ocean).
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settings) based on the same model (NEMO) were used to derive 
the uncertainty associated with each heat transport estimate.

Finally, CLASS1-2-3 must be complemented by quality indica-
tors averaged in space at basin scale, and possibly in time, 
in order to monitor and quantify the individual performance 
of model solutions. To this aim, data assimilation misfits (in-
novations and residuals) are extensively used, as observa-
tion operators, developed within data assimilation schemes, 
usually provide the most adequate transposition of the model 
solution into the observations’ space. CLASS4 metrics can be 
computed offline in delayed time, outside of the data assimi-
lation process, to add the possibility to compare residual dif-
ferences with one given observation between various forecast 
lengths, to compare with climatology and persistence, and 
finally to derive forecast skill scores. Hence, independent ob-
servations (not assimilated) can be used to compute CLASS4 
metrics, and reference datasets can be defined to build robust 

intercomparison frameworks. For instance, ARGO floats mea-
surements are only used by the GODAE OceanPredict commu-
nity in order to measure performance in salinity as illustrated 
by Figure 5.14 (Ryan et al., 2015). A spike in the statistics corre-
sponds to a campaign at sea in the Arctic in 2018, which shows 
that, despite a growing observing network, these statistics 
suffer from representativeness issues.

As at high resolution (a few km or less) the small scales are not 
constrained by observations, the performance measured by di-
rect or statistical comparisons to observations may not be as 
good as for coarser model solutions, which is referred to as the 
“double penalty” effect (Ebert, 2009). Neighbourhood metrics 
(Mittermaier et al., 2013, 2021) focus on the ability of a model to 
forecast a range of events within a neighbourhood in space and 
time, and for which the direct or statistical comparisons to ob-
servations at all time and space scales would not be informative.  

Figure 5.16.	  a) SLA along track L3 observation distribution (in meters) and two model ensembles in data 
space; (b) "Observation minus Ensemble" map for a period starting on 25 February 2012 and for three consecu-
tive weeks; (c) box-whisker plots and observation error bars averaged over the abyssal plain; (d) the Armorican 
shelf; and (e) the English Channel.
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5.8.	 
Outputs
Information on formats and types of outputs of all kinds of 
OOFS can be found in Chapter 4. The following section treats 
only some specific aspects related to circulation modelling.

5.8.1.	 Variables/EOV

The circulation modelling variables describe any system re-
lated to the production of 3D ocean dynamics variables.

The main physics variables (with their abbreviation or acro-
nym) are:

•	 Temperature

•	 temperature [T]
•	 sea surface temperature [SST]
•	 bottom temperature bottom [bottomT]

•	 Density [D]
•	 Salinity [S]
•	 Sea Surface Height [SSH]

•	 above sea level
•	 above geoid
•	 geopotential height

•	 Velocity
•	 Velocity [UV/W]

•	 geostrophic velocity [UV/UVG]
•	 barotropic velocity [UVB]

•	 Mixed Layer Depth [MLD]
•	 Sea Ice

•	 sea ice concentration [SIC]
•	 sea ice edge [SIE]
•	 sea ice extent [SIE]
•	 sea ice thickness [SIT]
•	 sea ice velocity [SIUV]
•	 sea ice drift [SIUV]
•	 snow [SNOW]
•	 iceberg [ICBG]
•	 sea ice age [SIAGE]
•	 sea ice albedo [SIALB]
•	 sea ice temperature [IST]

The variables follow the CF standards. The CF Metadata Con-
ventions are a widely used standard for atmospheric, ocean, 
and climate data. Standard names are defined in a CF Stan-
dard Name Table (see 🔗9).

9. http://cfconventions.org/standard-names.html

Additionally, “user oriented” metrics focusing on processes 
or using downstream applications can reduce this effect and 
allow to better assess the fit-for-purpose of ocean analyses 
and forecasts, among which we can cite eddies (Mason et al., 
2014), fronts detection (Ren et al., 2021), and lagrangian drift 
scores. Lagrangian separation distance scores and distribu-
tions (shown in Figure 5.15) are a primary validation diagnos-
tic when studying the impact of changes in the observations 
network (Tchonang et al., 2021). Figure 5.15 shows, in particular, 
results of a Lagrangian experiment wherein particles seeded 
in every model grid cell (1/12 degree resolution) and advected 
for 7 days in the Nature Run and three different OSSEs sur-
face currents (OSSE1 collecting and assimilating 3 nadir-like 
satellite altimeters, and OSSE2 SWOT-like satellite altimeter, 
and OSSE3 nadir-like and one SWOT-like satellite altimeters). 

Ensemble scores applied to ensemble forecasts (see Section 
5.6) also allow better study of predictability and, eventually, to 
validate and quantify the skill of the forecast. This is needed 

in particular for mesoscale features (Thoppil et al,. 2021). In the 
near future, it is essential to add this type of verification and 
quantification of uncertainty to the range of validation metrics. 
Figure 5.16 illustrates examples of ensemble diagnostics (Ver-
vatis et al., 2021a) important to be checked in the development 
phase and during the production to verify consistency between 
ensemble model distribution and observation. Figure 5.16a 
compares the distribution of observations (light grey) and of 
two ensemble simulations (dark grey); a good quality criterion 
is the distribution of ensemble members overlapping the dis-
tribution of the observations, if this should not be investigated. 
Figure 5.16b shows the bias between ensemble members and 
observations in the observations’ space for a dedicated period. 
Errors can also be quantified in physically consistent domains 
as illustrated in Figure 5.16c, where the consistency between 
box-whisker plots of the ensemble members distributions and 
error bars can be assessed for observations in the same area.
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5.9.	 
Inventories

The purpose of this section is to provide an initial inventory 
of the operational Near Real Time (NRT) and  Multi Year (MY) 
systems operating at international level. Details about the 
specific system, resolution, implemented circulation mod-
el, and data assimilation are provided in the following lists, 
along with the observations used for assimilation and as-
sessment, summary of the main offered product catalogue 
and, where existing, the website address to directly link to 
systems products and other relevant information.

5.9.1.	 Inventory of operational global to 
regional to coastal to local forecasting systems

The present state-of-the-art operational systems for NRT 
products from global to local scale is presented in Table 5.2. 
This proposed inventory has been prepared in collaboration 
with the Coastal and Shelf Seas (COSS-TT) Working Group, 
one of the OceanPredict Task Teams. An evolutive list of Re-
gional/Coastal Ocean Forecasting Systems (R/COFS) is main-
tained by the COSS-TT in the System Information Table (SIT) 
(latest version available at 🔗10). Due to the shorter lifespan 
and more frequent updates in coastal systems compared 
to global and basin-scale systems, the SIT is frequently re-
freshed and then please refer to the latest online version 
for up-to-date information. In addition to operational/NRT 
systems, the online SIT contains also tools (e.g. used for ap-
plications, crisis-time scenarios, etc.), research and pre-op-
erational models, etc.

5.9.2.	Inventory of multi-year systems

Starting from the list in Balmaseda et al. 2015, an initial in-
ventory of state-of-the-art MY systems has been prepared 
(Table 5.3). As in Table 5.2, for each system is provided scale 
(from global to regional), resolution, models, and providers, 
as well as relevant links to web pages that the reader may 
consult for further details. 

10. https://oceanpredict.org/science/task-team-activities/
coastal-ocean-and-shelf-seas/#section-sit
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Table 5.2.	 Initial inventory of global (G) to regional (R) to coastal (C) to local (L) operational forecasting systems.

WebsiteProductsData used for 
assimilation 

and assessment

Downscaling/
nesting

Circulation 
model

ResolutionAreaSystemScale

https://re-
search.csiro.
au/bluelink/
global/fore-
cast/

https://
science.
gc.ca/eic/
site/063.nsf/
eng/h_97631.
html

https://ec-
co-group.org/
products-EC-
CO-V4r4.htm

https://www.
metoffice.gov.
uk/research/
weather/
ocean-fore-
casting

https://www.
metoffice.gov.
uk/research/
weather/
ocean-fore-
casting

https://in-
cois.gov.in/

G

G

G

G

G

G

OceanMAPS, 
BLUElink (Bureau 
of Meteorology)

CONCEPTS GIOPS 
(Government of 

Canada)

ECCO: Estimating 
the Circulation 
and Climate of 

the Ocean

FOAM: Forecast 
Ocean Assim-
ilation Model 

system

NAVOCEANO, 
the US Naval 

Oceanographic 
Office (US)

INCOIS, the 
Indian National 

Centre for Ocean 
Information 

Service

Global 
ocean

Global 
ocean

Global 
ocean

Global 
ocean

Global 
ocean

Global 
ocean

0.1 degree grid 
spacing at 

the Australia 
region

1/4° horizon-
tal resolution

The horizontal 
resolution 

varies spatial-
ly from 22 km 

to 110 km

1/4° horizon-
tal resolution

1/12° horizon-
tal resolution

horizontal 
resolution at 
1/4° with 40 

vertical sigma 
levels

MOM4

NEMO

MITgcm

NEMO

HYCOM

ROMS

BODAS is an en-
semble optimal 

interpolation 
system used to 

assimilate avail-
able in-situ and 

satellite obs.

SEEK scheme, 
using INS, SLA, 

SST obs.

Assimilation of 
INS, SLA, SST 

obs.

NEMOVAR 
(3D-Var scheme) 
using INS, SLA, 

SST obs.

Hybrid data 
assimilation 

scheme

N/A

N/A

N/A

N/A

N/A

N/A

N/A

Daily T, S, SSH 
and UV

Daily 10-days 
forecast for T, S, 
SSH, UV, sea ice 
concentration

Daily forecast 
for T, S, SSH, UV, 
fluxes, sea ice

Daily mean, 
analysis and 

five-day forecast 
for T, S, SSH, UV, 

sea ice

Daily forecast 
for ocean fields

Daily 5 days 
forecast for 

surface UV, SST, 
MLD, waves and 

winds
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WebsiteProductsData used for 
assimilation 

and assessment

Downscaling/
nesting

Circulation 
model

ResolutionAreaSystemScale

https://gofs.
cmcc.it/

https://
marine.
copernicus.eu

https://
marine.
copernicus.eu

https://
marine.
copernicus.eu

https://
marine.
copernicus.
eu, https://
medfs.cmcc.
it/

https://
ds.data.jma.
go.jp/tcc/tcc/
products/
elnino/move_
mricom-g2_
doc.html

G

G

R

R

R

G/R

GOFS16 CMCC 
Global Ocean 
Forecasting 

System

Global MFC by 
Copernicus 

Marine Service  
(MOI, France)

Arctic MFC by Co-
pernicus Marine 
Service (NERSC, 

Norway)

Baltic MFC by Co-
pernicus Marine 
Service (SHMI, 

Sweden)

Mediterranean 
Sea MFC by Co-
pernicus Marine 
Service (CMCC, 

Italy)

MOVE/MRI.COM-
JPN (MRI, Japan)

Global 
ocean

Global 
ocean

Arctic 
Region

Baltic 
Sea

Medi-
terra-
nean 
Sea

Global, 
North 
Pacific, 
Japan

1/16° horizontal 
resolution and 98 

vertical levels

1/12° horizontal 
resolution and 50 

vertical levels

12.5 km at the 
North Pole

0.028 degrees x 
0.017 degrees in 

horizontal and 56 
levels

1/24° in horizontal 
and 141 vertical 
levels, 2-way cou-
pled to WW3 wave 

model

Double nested 
system consisting 
of global (GLB), 
North Pacific (NP) 
and Japan area 
(JPN) models

Ocean model : MRI.
COM with resolu-
tions: (JPN) 1/33° 
x 1/50°, 60 levels; 
(NP) 1/11° x 1/10°, 
60 levels; (GLB) 
1°x1/2° (tripolar), 

60 levels

NEMO

NEMO

HYCOM

NEMO

NEMO

MRI.COM

OceanVar 
(3D-Var scheme) 
using INS, SL, 
SST, SICE obs.

SAM2 (SEEK 
scheme) using 
INS, SLA, SST 

obs.

EnKF assimi-
lation scheme 
using INS, SLA, 
SST and SICE 

obs.

PDAF LESTKF 
univariate for 

SST

OceanVar 
(3D-Var scheme) 
using INS, SL, 

SST obs.

4DVAR (applied 
to a reduced 

grid version of 
NP model). As-
sessment: Tide 
gauge, In-situ 
observations 
(buoy, T-S pro-
files), HF radars, 
satellite (SST, 
SSH, sea ice 

concentration), 
volume trans-

port at repeated 
hydrographic 

sections.

N/A

N/A

N/A

1-way nested 
into NWS-MFC 

Copernicus 
Marine Service 

regional 
product

1-way nested 
into GLO-MFC 
Copernicus 

Marine Service 
(1/12°, 50 ver-
tical levels)

Downscaling: 
one/two-

way nesting 
with IAU 

initialization

Daily analysis 
and 7 days fore-
cast for T, S, SSH, 

UV, sea ice

Daily analysis 
and 10 days 

forecast for T, S, 
SSH, UV, sea ice

Daily analysis 
and 10 days 

forecast for T, S, 
SSH, UV, sea ice

Daily analysis 
and 6 days 

forecast for T, S, 
SSH, MLD, UV

Analysis and 10 
days forecast 

for T, S, SSH, UV, 
MLD, fluxes, sea 

icea

Real time 
monitoring and 
prediction, re-
analysis of: T, S, 
UV, SSH, sea ice 
concentration, 

tropical cyclone 
heat potential 

(TCHP)
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WebsiteProductsData used for 
assimilation 

and assessment

Downscaling/
nesting

Circulation 
model

ResolutionAreaSystemScale

https://
marine.
copernicus.eu

https://
marine.
copernicus.eu

https://
marine.
copernicus.eu

R

R

R

R

Irish-Biscay-Ibe-
rian shelves MFC 

by Copernicus 
Marine Service 

(Mercator Ocean 
International, 
France / Spain)

North-West shelf 
MFC by Coper-
nicus Marine 
Service (Met 
Office, UK)

Black Sea MFC 
by Copernicus 
Marine Service 
(CMCC, Italy)

High Resolution 
Data Assimila-
tive Model for 

Coastal and Shelf 
Seas around 

China (Institute 
of Atmospheric 
Physics/Chinese 
Academy of Sci-
ences, China)

Irish-Bis-
cay-Iberian 

shelves

European 
North-West 
shelf Seas

Black Sea

Northwest 
Pacific, 

coastal seas 
around 
China

1/36° in hori-
zontal and 50 
vertical levels

1.5 km in 
horizontal 

and 51 hybrid 
s-sigma ter-

rain-following 
coordinates 

on the vertical

1/40° in hori-
zontal and 121 
vertical levels

NEMO

NEMO

NEMO

SEEK scheme, 
using INS, SL, 

SST obs.

NEMOVAR 
(3D-Var scheme) 
using INS, SL, 

SST obs.

OceanVar 
(3D-Var scheme) 
using INS, SL, 

SST obs.

Assessment: 
SST, SLA, tem-
perature, buoys, 

ship cruises

1-way nested 
into GLO-MFC 
Copernicus 

Marine Service 
(1/12°, 50 ver-
tical levels)

1-way nested 
into Met Office 

FOAM NATL 
(1/12°; 6 hourly 
fields) and

Baltic Sea 
physics by 
Copernicus 

Marine Service 
(2 km, 1 hourly 

fields)

Lateral open 
boundary con-

ditions from 
the Unstruc-
tured Turkish 
Straits System 
(U-TSS, Ilicak 
et al. 2021)

2-way nesting

Analysis and 5 
days forecast 

for T, S, SSH, UV, 
MLD

Analysis and 5 
days forecast 

for T, S, SSH, UV, 
MLD

Analysis and 10 
days forecast 

for T, S, SSH, UV, 
MLD

Daily averaged 
3-D fields of 

UV, T, S
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WebsiteProductsData used for 
assimilation 

and assessment

Downscaling/
nesting

Circulation 
model

ResolutionAreaSystemScale

MARC: http://
marc.ifremer.
fr

ILICO: https://
www.ir-ilico.
fr/en

http://ocim-
stest.ocean.
gov.za/aloga_
bay_model

http://
omgsrv1.
meas.ncsu.
edu:8080/
CNAPS/

https://www. 
marinha.mil. 
br/chm/
dados 
-do-smm- 
modelagem- 
numerica-te-
la-de-chama-
da/modela-
gem-numerica

R/C

R/C

R/C

R/C

MARC: Modelling 
and Analyses for 
Coastal Research 

and ILICO: 
Coastal Ocean 
and Nearshore 

Observation 
Research 

Infrastructure 
(Ifremer, France)

SOMISANA (SAE-
ON/DFFE, South 

Africa)

CNAPS Coupled 
Northwest At-

lantic Prediction 
System (North 
Carolina State 
University, USA)

REMO Oceano-
graphic Modeling 

and Observa-
tion Network 

(Brazilian Navy 
Hydrographic 
Center, Brazil)

Bay of Bis-
cay / English 

Channel / 
Northwest-

ern Mediter-
ranean Sea

Algoa Bay, 
south coast, 
South Africa

Northwest 
Atlantic 

coast ocean, 
including 
the entire 
east coast 
of U.S., 

the Gulf of 
Mexico and 
Caribbean 

seas

Region 
between 
latitudes 

35.5°S and 
7°N and 

longitude 
20°W to the 

Brazilian 
coast

2.5 km hor-
izontal resolu-

tion and 40 
levels

Horizontal 
grid that 

decreases 
from ~3km at 
the edges to 
500 m within 

the bay

Horizontal 
resolution < 

7 km

2 grids, at 
1/12° and 

1/24° horizon-
tal resolu-
tions for 

the eastern, 
southeastern 
and southern 

regions

MARS3D

CROCO

ROMS

HYCOM

SST, HF Radar 
(sea state + cur-
rents), Moored 
buoys (T,S)

No DA. Assess-
ment is based 
on Underwater 
Temperature 
Recorder (UTR) 
and ADCP data

HF Radar, buoy, 
ship, satellite 
observations

The system 
assimilates 

vertical profiles 
of temperature 
(T) and salinity 
(S) from the 
ARGO system, 
XBTs, CTDs, Sea 
Level Anomaly, 

SST; assessment 
using AVISO SL, 

SST, INS

Spectral 
nudging, one-
way nesting 

using GLO-MFC 
products and 
2D models for 

tides

1-way nested 
into GLO-PHY 
(1/12°, 50 ver-
tical levels)

1-way nesting 
with Mercator 
Ocean GLO-
PHY; Global 

HyCOM; WWIII

TPXO 7.1 for 
tides; one-way 
nesting from 

the 1/12° 
resolution to 

the 1/24° reso-
lution grid

1 hr output in 
Bay of Biscay, 
3 hr output in 
Mediterranean 
Sea, HF observa-
tions (20min)

SSH, 3D T, S and 
UV, trajectories 
from hypotheti-

cal oil spills

Daily nowcast 
and 3-day fore-
cast for UV, T, 
S, ocean waves 

and atmospheric 
variables

4-day forecasts 
(T, UV and 

SSH) at 6-hour 
intervals updat-

ed daily on 2 
different grids
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WebsiteProductsData used for 
assimilation 

and assessment

Downscaling/
nesting

Circulation 
model

ResolutionAreaSystemScale

https://www.
bsh.de/EN/
DATA/Predic-
tions/predic-
tions_node.
html

http://codm.
hzg.de/codm

https://
dreams-c1.
riam.ky-
ushu-u.ac.jp/
vwp

R/C

R 
to L

R 
to L

DREAMS: Data 
assimilation 

Research of the 
East Asian Marine 
System (RIAM, 

Kyushu Universi-
ty, Japan)

BSH Operational 
Model System 
(BSH, Germany)

COSYNA

Northwest-
ern Pacific 
with focus 

on marginal 
seas

North and 
Baltic Sea, 

German 
coastal 
waters

North Sea, 
German 
Bight, 

German 
Wadden Sea

DREAMS_mar-
ginal seas 
model at 

~7.4km hor-
izontal resolu-
tion. Coastal 

models at 
~1.5km along 
the Japan Sea 
coast nested 
in DREAMS_

marginal seas 
model

Horizontal 
resolution is 
3 km for the 
North and 

Baltic Sea, 0.5 
km for Ger-
man coastal 

waters

3 nested mod-
els: i) North 

Sea Baltic Sea 
model (5 km), 
ii) German 

Bight model 
(1 km, varying 

unstruc-
tured-grid, 

1km), iii) Estu-
arine model 

(varying 
unstruc-
tured-grid, 
20-200 m)

RIAM

HBM

GETM

Assessment: 
Volume trans-
port through 
the Tsushima 

Strait, U, V and T 
measurements 

by fishing 
vessels

Assimilation 
with PDAF 

scheme using 
AVHRR SST/

Sentinel-3 SST 
and validation 
using Coper-
nicus Marine 
Service data

Assessment 
with indepen-

dent ADCP 
observations, 
FerryBox data, 

dedicated 
profile mea-
surements, in-
tercomparison 
with products 

from other 
operational 

systems

OBC from 
climatological 

run

2-way nesting 
among region-
al and coastal 

models

MyOcean 
ECOOP, OSTIA, 
MERIS color 

data

Downscaling 
using 3 differ-

ent grids

T, S, U, V, sea lev-
el, mixed layer 
depth, density

120-hour 
forecast from 0 

and 12 UTC and a 
78-hour forecast 

from 6 and 
18 UTC; water 
level, T, S, UV, 

ice products and 
biogeochemical 

variables

Surface UV, T, S, 
suspended mat-
ter, wind wave 
characteristics 
in the German 

Bight
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WebsiteProductsData used for 
assimilation 

and assessment

Downscaling/
nesting

Circulation 
model

ResolutionAreaSystemScale

http://sanifs.
cmcc.it

http://
opendap.
puertos.es/
thredds/
catalog.html 
; http://www.
puertos.
es/es-es/
proyectos/
Paginas/SA-
MOA.aspx

http://fore-
cast.maretec.
org

C

C

C/L

PCOMS: Portu-
guese Coastal 
Operational 

Modelling Sys-
tem (MARETEC, 

Portugal)

SANIFS (CMCC, 
Italy)

SAMOA (Puertos 
del Estado, 
Spain)

Western 
Iberia region 
and subre-

gions

Southern 
Adriatic 

Northern Io-
nian coastal 
Forecasting 

System

Regional 
areas at ~ 2 
km resolu-
tion; model 
applications 

consist of 
2 nested 

regular grids 
with spatial 
resolution 
of ~350 m 
and ~70 

m for the 
coastal and 

harbour 
domains

5.6 km in hor-
izontal and 50 
vertical layers

Horizontal 
resolution 

from 3 km in 
open-sea to 
100-20 m in 

coastal areas

Regional 
areas at ~ 2 

km resolution; 
model 

applications 
consist of 2 

nested regular 
grids with 

spatial reso-
lution of ~350 
m and ~70 m 

for the coastal 
and harbour 

domains

MOHID 3D

SHYFEM

ROMS

N/A

No DA. Assess-
ment using 

available ob-
servations from 

Copernicus 
Marine Service, 
EMODnet and 
national ob-

serving network

No DA. Assess-
ment using 
in-situ obs. 

from mooring 
buoys, ADCPs, 

tide gauges and 
drifter buoys; 
SST satellite 

data and 
surface currents 

from HF radar

1-way nesting 
into Merca-
tor-Ocean 

PSY2V4 in the 
North Atlantic; 

tidal levels 
computed by a 
2D version of 
MOHID, forced 
by FES2004, 
running on a 
wider region.

Climatological 
profiles from 
WOA09 for 
nutrients.

1-way nesting 
using the 

Copernicus 
Marine Service 
Mediterranean 
MFC regional 

forecast 
products (at 

1/24°)

1-way nesting 
using the 

IBI-MFC Re-
gional Forecast 

products (at 
1/36°)

Hindcasts and 
3-day forecasts 
of SSH and 3D 
UV, T, S and 

biogeochemical 
model

Short term fore-
cast (3 days) of 
SSH, 3D UV, T, S

Daily operation-
al short-term 
(+72h) met-

ocean forecast
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WebsiteProductsData used for 
assimilation 

and assessment

Downscaling/
nesting

Circulation 
model

ResolutionAreaSystemScale

https://hud-
son.dl.ste-
vens-tech.
edu/mari-
timeforecast/
index.shtml

https://
savannah.
cmcc.it

http://
forecast.
maretec.org/
tagusmouth

C/L

C/L

L

NYHOPS: New 
York Harbor 
Observation 

and Prediction 
System (Jupiter 
Intelligence, USA)

SWITCH – Georgia 
Coasts (CMCC / 

GeorgiaTech, Italy 
/ USA)

Tagus Mouth op-
erational model 
(MARETEC / IST, 

Portugal)

New York 
and East 

Coast of US

Georgia 
coast, US

Tagus 
Estuary 

and Mouth 
region

7.5 km at the 
open ocean 
boundary to 

less than 50 m

1km in open 
ocean to 
100m in 

coastal areas 
to 10m in the 

rivers

Variable 
horizontal 
resolution, 

ranging from 
2 km off the 
coast up to 

400 m inside 
the estuary, 
50 layers in 
the vertical

POM

SHYFEM

MOHID 3D

N/A

No DA, assess-
ment is based 
on tide gauges 

at coast and 
along rivers

No DA. Assess-
ment: Argo and 
buoys data from 

IBI-ROOS and 
the Portuguese 

hydrograph-
ic institute, 

satellite images 
(ODYSSEA, 

Ocean Colour 
and HF radar)

Offshore 
boundary 

tides, surges, 
waves. Real 

time data from 
Ntl Ocean 

Service, Adv. 
Hydrologic 
Prediction 
Service, Ntl. 

Climatic Data 
Center.

1-way nested 
into GLO-PHY 
(1/12°, 50 ver-
tical levels)

1-way nesting 
using the 

PCOMS

72 hr forecasts, 
nowcasts, 24 hr 
hindcasts initi-

ated every 6 hrs; 
Variables: SSH, 
T, S, UV, winds, 
coastal waves - 
height, period 
and direction, 

biogeochemical 
variables

3-days forecast 
for SSH, 3D UV, 

T, S

Hindcasts and 
3-day forecasts 
of SSH and 3D 
UV, T, S and 

biogeochemical 
model
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Table 5.3.	 Initial inventory of global (G) to regional (R) to coastal (C) to local (L) multi-year systems.

WebsiteTimeseriesData 
Assimilation 

scheme

Downscaling/
nesting

Circulation 
model

ResolutionAreaSystemScale

https://
rda.ucar.
edu/#!lfd?n-
b=y&b=pro-
j&v=NCEP%20
Climate%20
Forecast%20
System%20
Reanalysis

http://c-glors.
cmcc.it/
index/index.
html

www.ec-
co-group.org

http://
www.gfdl.
noaa.gov/
ocean-da-
ta-assimila-
tion

https://www.
metoffice.gov.
uk/research/

www.ec-
co-group.org

G

G

G

G

G

G

CFSR by the Cli-
mate Prediction 

Center

C-GLORS by the 
Euro-Mediterra-
nean Center on 
Climate Change 

Foundation

ECCO by JPL-NASA

ECDA by the 
Geophysical 

Fluid Dynamics 
Laboratory

GloSea5 (UK 
MetOffice, UK)

GECCO by Univer-
sity of Hamburg

Global 
Ocean

Global 
Ocean

Global 
Ocean

Global 
Ocean

Global 
Ocean

Global 
Ocean

~ 38 km hor-
izontal resolu-

tion and 64 
vertical levels

1/4° horizon-
tal resolution 
and 50 to 75 

levels

The horizontal 
resolution 

varies spatial-
ly from 22 km 

to 110 km

1° horizontal 
resolution 

and 50 verti-
cal levels

1/4° horizon-
tal resolution 
and 75 levels

MOM4

NEMO

MitGCM

MOM4

NEMO

MitGCM

3D-Var scheme 
for the assim-
ilation of SST, 
INS, SICE obs.

OceanVar 
(3D-Var scheme) 
using INS, SLA, 
SST and SICE 

obs.

4D-Var scheme 
for the assim-
ilation of SLA, 
SST and INS 

obs.

EnKF scheme 
using INS, SST 
and SLA obs.

3D-Var scheme 
using SLA, SST, 

INS and SICE obs.

4D-Var scheme 
for the assim-
ilation of SLA, 
SST and INS 

obs.

N/A

N/A

N/A

N/A

N/A

N/A

1979-2010

1990-2016

1992-2017

Integration for 
the 20th Century

1993-2015

1948-2018
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WebsiteTimeseriesData 
Assimilation 

scheme

Downscaling/
nesting

Circulation 
model

ResolutionAreaSystemScale

http://www.
godac.jam-
stec.go.jp/
estoc/e/

https://www.
cawcr.gov.
au/

https://www.
ecmwf.int/
en/research/
climate-re-
analysis/
ocean-re-
analysis

https://clima-
tedataguide.
ucar.edu/
climate-data/
soda-sim-
ple-ocean-da-
ta-assimila-
tion

https://www.
mri-jma.
go.jp/

https://
marine.
copernicus.eu

https://
marine.
copernicus.eu

G

G

G

G

G

G

R

K7-ODA (Japan 
Agency for 

Marine-Earth 
Science and 
Technology)

PEODAS (Centre 
for Australian 
Weather and 

Climate Research 
- Bureau of 
Meteorology)

ORAS5 (ECMWF, 
UK)

SODA (National 
Center for Atmo-
spheric Research 

Staff, US)

MOVE-C RA (Ja-
pan Meteorologi-

cal Agency)

Global Ocean 
MFC by Coper-
nicus Marine 
Service (MOI, 

France)

Arctic MFC by Co-
pernicus Marine 
Service (NERSC, 

Norway)

Global 
Ocean

Global 
Ocean

Global 
Ocean

Global 
Ocean

Global 
Ocean

Global 
Ocean

Arctic 
Region

1° horizontal 
resolution 

and 45 levels

1° x 2° 
horizontal 
resolution

1° horizontal 
resolution

1/4° horizon-
tal resolution

1° horizontal 
resolution

1/12° horizon-
tal resolution, 

50 vertical 
levels

12.5 km 
horizontal 
resolution 

and 12 levels

MOM3

MOM2

NEMO

POP2.1

MRI.COM2

NEMO

HYCOM

4D-Var adjont 
method for the 
assimilation of 
INS, SLA, SST 

obs.

EnKF for the 
assimilation 

of INS and SST 
obs.

3D-Var scheme 
using SLA, INS 
and SST obs.

OI for INS and 
SST obs.

3D-Var scheme 
using SLA, INS 
and SST obs.

Reduced-order 
Kalman filter 

for assimilating 
SLA, SST, INS 
and SICE obs.

DEnKF for 
assimilating 
satellite and 

INS obs.

N/A

N/A

N/A

N/A

N/A

N/A

N/A

1957-2009

2000-2010

1979-present

1869-2010

1950-2011

1993-2019

1991-2019
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WebsiteTimeseriesData 
Assimilation 

scheme

Downscaling/
nesting

Circulation 
model

ResolutionAreaSystemScale

https://
marine.
copernicus.eu

https://
marine.
copernicus.eu

https://
marine.
copernicus.eu

https://
marine.
copernicus.eu

https://
marine.
copernicus.eu

R

R

R

R

R

Baltic MFC by 
Copernicus 
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