
6. 
Sea Ice modelling

CHAPTER COORDINATOR 

Laurent Bertino

CHAPTER AUTHORS (in alphabetical order) 

Ed Blockley, Johnny A. Johannessen, and Einar Örn Ólason



6. Sea Ice modelling
6.1. General introduction to sea ice models 

6.1.1.	Objective,	applications	and	beneficiaries

6.1.2. Fundamental theoretical background

6.2. Sea Ice forecast and multi-year systems
6.2.1. Architecture singularities

6.2.2. Input data: available sources and data handling

6.2.3. Modelling component
6.2.3.1. Basic equations and modelling choices

6.2.3.2. Sea ice rheology

6.2.3.3. Community sea-ice models

6.2.3.4. Coupling of sea ice to atmosphere and ocean 

6.2.3.5. Model setup

6.2.4. Ensemble Modelling

6.2.5. Data Assimilation systems 
6.2.5.1. Ensemble-based methods

6.2.5.2. Variational methods

6.2.5.3. Challenges with coupled data assimilation

6.2.6. Validation strategies

6.2.7. Outputs

6.2.8. Examples of  operational sea ice forecasting systems

6.3. References



6.1.  
General introduction to sea ice models 

6.1.1. Objective, applications and beneficiaries

The main objective of an operational sea ice forecasting sys-
tem is to provide users with a reliable estimate of the state 
of the ice cover and its temporal evolution. To meet this pur-
pose,	the	system	needs	to	be	coupled	to,	or	use	data	from,	
ocean and atmosphere forecasting systems. Some form of 
data assimilation is also required to counteract errors due 
to the chaotic nature of the atmosphere-ocean-ice system. 
Users of sea ice forecasting systems are either stakeholders 
operating in the Arctic or downstream service providers who 
use the information as an input to their own services. With a 
changing	climate	and	a	warming	Arctic,	the	number	of	stake-
holders interested in operating in that region is growing.

The Arctic is getting warmer with temperatures rising at ap-
proximately twice the rate of the global average (Overland et 
al.,	2016)	but	also	more	attractive	for	business	as	its	natural	
resources are becoming available for exploitation and trans-
port	for	the	first	time	in	our	history.	These	include	about	13%	
of the world’s oil and gas resources as estimated by the Unit-
ed	States	Geological	Survey	(Gautier	et	al.,	2009),	gold	and	
other	metals,	and	5.5%	of	the	freshwater	resources	stored	on	
Greenland	(Kundzewicz	et	al.,	2007).	Changing	environmental	
conditions are modifying ecosystems in diverse ways. In the 
Barents	Sea,	the	cod	are	thriving	thanks	to	warming	condi-
tions	(Kjesbu	et	al.,	2014).	A	migration	behaviour	of	boreal	

generalist	fishes	to	cooler	waters	is	also	observed	in	the	Ber-
ing	Sea	(Mueter	and	Litzow,	2008).	These	changes	have	impli-
cations	for	fisheries	management	and	more	generally	for	the	
Arctic ecosystem. Cruise tourism in the Arctic is also devel-
oping fast since operators can offer comfortable icebreaker 
cruises all the way to the North Pole. 

The	NSR	along	the	Russian	coast	of	the	Arctic,	which	was	
heavily	used	by	the	Soviet	Union	until	the	1990’s,	could	again	
become an attractive alternative to reach East Asia from West-
ern Europe. The route is indeed shorter than the one crossing 
Suez Passage (17000 km instead of 22000 km for a Rotter-
dam-Shanghai	voyage)	and	would	save	fuel.	However,	in	case	
of	accidents,	cargo	and	fuel	would	pose	serious	threats	for	
the Arctic environment. Coastguards and navies of the Arctic 
nations	must	then	be	prepared	for	assisting	vessels,	perform-
ing	search	and	rescue	operations,	and	remediating	oil	spills	
in	ice-infested	waters,	with	frequently	poor	communication	
capabilities that may hinder access to new information.

The oil and gas exploration and production need sea ice fore-
casting	both	on	local	scales,	to	simulate	individual	ice	floes	
on	the	theatre	of	their	operations,	and	on	large	scales,	to	pre-
dict the time of the freeze up and break-up of the ice. It is 
expected that the exploration and production activities will be 
more active in relatively mild ice conditions than in severe ice 
conditions,	which	means	that	forecasts	will	have	higher	value	

Figure 6.1. 	 Pack	ice	showing	a	pressure	ridge	on	the	left;	Marginal	Ice	Zone	with	ice	floes	on	the	right.	(Pho-
tos:	E.	Storheim,	INTAROS/NERSC).	
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for	the	MIZ	than	for	the	ice	pack.	The	MIZ,	defined	as	the	
ice-covered	region	under	the	influence	of	surface	waves	from	
the	open	ocean,	is	particularly	in	need	of	forecasts	to	prevent	
risks	such	as	ice	floe’s	projections	under	the	action	of	waves.

There	are	fewer	stakeholder	interests	in	the	Southern	Ocean,	
due to the reduced commercial activities in that region. How-
ever,	ice-ocean	predictions	can	provide	information	for	tour-
ism	or	scientific	operations	in	the	region,	including	access	to	
Antarctic	research	stations	and	support	for	scientific	research	
vessels. The complex rescue of a joint tourist-research vessel 
stuck within the Antarctic sea ice in December 2013 (A. 
Luck-Baker,	BBC	News,	21	January	2014,	🔗1),	requiring	assis-
tance	from	two	icebreakers	and	a	helicopter,	highlighted	the	
need for reliable predictions even in such a remote region. 
On	longer	timescales,	changing	sea	ice	conditions	have	im-
plications	for	ice-dependent	wildlife	in	the	region,	such	as	
emperor	penguins	(e.g.,	Jenouvrier	et	al.,	2012),	which	raises	
associated wildlife management concerns. 

The shipping industry is primarily concerned with very de-
tailed	ice	concentration,	thickness	and	compression	(and	mar-
ginally	snow	depths,	because	deep	snow	can	also	impede	the 

 

1. https://www.bbc.com/news/science-environment-25833307

progression	of	an	icebreaker).	On	the	other	hand,	in	the	af-
termath	of	oil	spills	in	ice-infested	waters,	search	and	rescue	
operations and forecasting are both dependent on ice motion 
and their diffusive properties that increase the search radi-
us with time. The question of spatial and temporal resolution 
is especially critical for the latter case because of the strong 
scale-dependence	of	sea	ice	deformation	rates	(Rampal	et	al.,	
2008).	In	addition,	the	diffusion	is	higher	in	the	chaotic	MIZ	
than	in	the	ice	pack	(Figure	6.1).	The	oil	industry	would	ulti-
mately	need	a	detailed	forecast	of	the	position	of	each	ice	floe	
surrounding their operations for the day-to-day management 
of	their	activities,	which	can	be	only	delivered	by	discrete-el-
ement	models	(Herman	2015,	Rabatel	et	al.,	2015).	How	to	nest	
discrete-element	models	into	the	continuum	sea	ice	models,	
considered	in	this	chapter,	remains	an	open	question.

6.1.2. Fundamental theoretical background

The physical processes simulated by sea ice models are com-
monly	split	into	two:	vertical	processes,	related	to	thermody-
namic	growth	and	melt,	and	mechanical	and	dynamical	pro-
cesses	giving	rise	to	horizontal	movement	of	ice	(Figure	6.2).2

2. https://www.lanl.gov/discover/science-briefs/2021/
March/0322-cice.php

Figure 6.2.   A CICE Consortium graphic of sea-ice physics illustrates the complexity and breadth of variables 
at play (From 🔗2).
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The thermodynamic growth and melt of ice can be thought of 
as the result of the diffusion of heat between ocean and atmo-
sphere,	through	the	ice.	Additional	complications	arise	primar-
ily	due	to	the	presence	of	salt	or	brine	pockets	in	the	ice,	and	
the presence of snow. The brine pockets affect the heat conduc-
tivity	and	heat	capacity	of	the	ice,	while	both	heat	conductivity	
and	heat	capacity	of	the	snow,	as	well	as	its	density,	are	affected	
by	the	state	and	type	of	snow,	as	well	as	snow	metamorphosis.

The basics of thermodynamic modelling of sea ice have been 
well	established	since	the	early	70s	(Maykut	and	Untersteiner,	
1971),	with	the	notable	improvement	in	theoretical	understand-
ing brought by the application of mushy-layer theory to sea ice 
(Feltham	et	al.,	2006),	and	substantial	work	relating	to	the	dy-
namics of brine drainage and the multi-phase nature of sea ice 
(Vancoppenolle	et	al.,	2007;	Notz	and	Worster,	2009;	Griewank	
and	Notz,	2013).	In	terms	of	model	development	though,	prog-
ress has been made in improving numerical performance and 
in	technical	aspects,	such	as	conservation	of	heat,	energy,	and	
enthalpy	(e.g.,	Semtner,	1976;	Bitz	and	Libscomb,	1999;	Winton,	
2000;	Huwald	et	al.,	2005).	Recently,	the	more	advanced	multi-
phase physics have also found its way into large-scale sea-ice 
models	(Turner	et	al.,	2013;	Turner	and	Hunke,	2015).

The	fundamentals	of	ice	dynamics	modelling	are	less	firmly	
rooted in basic theoretical understanding. While most of the 
terms of the momentum equation are well understood and fol-
low the basic formulation of the Navier-Stokes equation on a 
rotating	sphere,	the	formulation	of	internal	stresses	is	less	cer-
tain. These describe the response of the ice to external forcing 
and	are,	as	such,	at	the	heart	of	sea	ice	dynamical	modelling.

Sea	ice	is	a	solid	material	and,	as	such,	can	only	move	once	
fractured or broken. In most sea ice models this is taken into 

account	by	assuming	a	 rate-independent	 (von	Mises)	plas-
ticity. This approach was originally proposed by Coon et al. 
(1974)	 but	 reshaped	 into	 a	more	 computationally	 tractable	
form	in	the	viscous-plastic	model	proposed	by	Hibler	(1979),	
in which the ice is assumed to deform in a linear-viscous 
manner	until	it	reaches	a	plastic	threshold,	representing	the	
fracturing	or	breaking	of	the	ice.	The	fracturing	process	is,	as	
such,	simulated	explicitly	at	the	grid	scale.

However,	the	process	of	ice	fracturing	has	been	shown	to	be	the	
result of the propagation of fracturing events from small spatial 
scales	to	large	ones	(Weiss	and	Marsan,	2004).	This	results	 in	
fractal	characteristics	of	the	deformation	rates	(e.g.,	Marsan	et	
al.,	2004;	Rampal	et	al.,	2008;	Stern	and	Lindsay,	2009¸	Schulson	
and	Hibler,	2017).	It	means	that	a	sea	ice	model	hoping	to	cor-
rectly capture the deformation of the ice must account for this 
propagation of fracturing events from small to large scales. As 
the propagation starts at very small spatial and temporal scales 
(Oikkonen	et	al.,	2017),	a	geophysical	scale	model	must	account	
for this through a sub-grid scale parameterisation.

The role and importance of fracture dynamics is still a hotly 
debated subject within the sea ice modelling community. The 
fractal nature of sea ice deformation is generally accepted and 
the scaling of deformation rates is recognised as a potential tool 
and metric for model evaluation and improvement (Rampal et 
al.,	2016;	Spreen	et	al.,	2017;	Hutter	et	al.,	2018;	Rampal	et	al.,	2019;	
Bouchat	et	al.,	2021).	At	the	same	time,	it	is	still	unresolved	the	
question of whether to explicitly simulate the fracturing process 
at	a	very	high	resolution	(Hutter	et	al.,	2019)	or	to	use	a	sub-grid	
scale parameterisation of the fracturing process at a more mod-
est	resolution	(Dansereau	et	al.,	2016;	Rampal	et	al.,	2016).

6.2.  
Sea Ice forecast and multi-year systems
6.2.1. Architecture singularities

This section and the next one focus on the “forward integra-
tion”	spot	in	the	centre	of	Figure	4.1,	designing	the	architec-
ture of an OOFS.

Sea ice drift forecasts are affected by multiple sources of 
uncertainties. The surface winds are one of the most im-
portant external forces driving the motion of the sea ice 
in	the	central	Arctic	(Thorndike	and	Colony,	1982).	More-

over,	 the	uncertainties	 in	 the	atmospheric	 reanalysis	 in	
the	Arctic	are	higher	than	those	at	the	mid-latitudes,	and	
observations are insufficient to estimate the statistical 
characteristics	(scale,	amplitudes)	of	the	errors. Rabatel 
et	al.	(2018)	investigated	the	sensitivity	of	sea	ice	drift	us-
ing	neXtSIM-EB	for	the	uncertainties	of	the	surface	winds.
They	concluded	that,	in	regions	of	highly	compact	ice	cov-
er,	the	accuracy	of	surface	wind	forcing	and	sea	ice	rheol-
ogy are both important for the probabilistic forecast skill 
of sea ice trajectories.
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The ocean below the ice contains large quantities of heat 
and	momentum,	enough	to	melt	the	sea	ice	and	to	cause	ice	
drift	and	deformations.	Uncertainties	in	ocean	temperature,	
vertical	mixing,	and	currents	are	then	very	meaningful	for	the	
sea	ice.	The	surface	ocean	salinity	is	important,	as	the	melt-
ing	point	temperature	depends	on	it.	However,	measuring	
ocean properties and particularly currents below the sea ice 
is challenging and uncertainties are rather high. 

Uncertain	initial	conditions,	particularly	the	sea	ice	thick-
ness,	persist	a	long	time	(Chevallier	and	Salas-Mélia,	2012).	
Blockley	and	Peterson	 (2018)	showed	that	 the	sea	 ice	con-
ditions in spring persist typically a few months into the 
summer and are an important source of large-scale predict-
ability. Errors in the position of the ice edge at the beginning 
of a forecast are usually persistent throughout the forecast 
run and ought to be post-processed for practical use. 

Finally,	sea	ice	models	are	dependent	on	their	numerous	
model	parameters,	both	in	the	sea	ice	dynamics	and	ther-
modynamics	(Urrego-Blanco	et	al.	2016).

6.2.2. Input data: available sources and data 
handling

Initialized forecasts are critically dependent on the observa-
tions used for their initialization. To be useful for operational 
systems,	observations	are	needed	in	near	real-time	for	short-
term forecasts and with limited time lag for seasonal and lon-
ger forecasts. There are unique challenges involved in polar 
observations	 because	 of	 its	 remoteness,	 harsh	 conditions,	
and	long	polar	night.	However,	forecasting	systems	are	making	
use	of	satellite	observations	for	initialization,	most	routinely	
for	sea	ice	concentration.	Additionally,	new	products,	such	as	
sea	 ice	thickness	and	drift,	are	becoming	available	and	may	
ultimately improve the predictive capabilities.

Sea	ice	reconnaissance	flights	were	mostly	occasional	until	
after	the	second	world	war,	with	the	exception	of	the	USSR	
which	started	systematic	flights	with	Polar	Aviation	as	ear-
ly as 1929 to monitor the Northern Sea Route. The USA and 
Japan	gradually	increased	the	frequency	of	their	flights	at	
the turn of the 1950’s and adopted the WMO sea ice charting 
standard	proposed	in	1952	(WMO,	1970).	These	flights	are	still	
used	nowadays,	mostly	in	Canada,	but	have	elsewhere	been	
superseded by satellite data. 

Passive-μwaves Scatterometer SAR Altimeter Spectrometer InfraredRadi-
ometer

SMOS Metop-B/C ASCAT Sentinel-1A/B CRYOSAT-2 Sentinel-3  A/B Sentinel-3  A/B

Sentinel-3  A/B Sentinel-2  A/B Metop AVHRR

AMSR-2 CFOSAT Radarsat2 Altika Aqua MODIS Aqua MODIS

SMAP Oceansat2 Radarsat  
constellation

ICESat/ICESat 2

CFOSAT*

CIMR Sentinel-1 C/D SWOT Sentinel-3 C/D Sentinel-3 C/D

Rose-L Cristal Sentinel-2 C/D

HARMONY**

Table 6.1.  Overview of operating and approved satellites and sensors for the sea ice observations grouped 
into:	ESA	and	Eumetsat	missions	(yellow),	3rd	Party	Missions	(green)	and	new	approved	missions	from	ESA	and	
NASA/CNES	(blue).	Spectrometers	and	infrared	radiometers	are	only	sensing	in	cloud	free	conditions.		Note	
(	*)		that	CFOSAT	flies	a	combined	altimeter	and	real	aperture	radar	at	five	distinct	incidence	angles	up	to	10	
degrees.	Harmony	(**)	comprises	two	bi-static	satellites	that	will	fly	in	convoy	with	Sentinel-1.

Metop second 
generation

BIOMASS

CFOSAT*
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25	km,	which	is	consistent	with	current	operational	models	of	
the whole Arctic but still coarse with respect to the needs of 
any operational users navigating in ice-infested waters. SAR 
and	satellite	data	in	the	visible	channels	(VIIRS,	AVHRR,	MODIS,	
SPOT)	provide	much	more	detail	at	spatial	resolutions	finer	
than	1	km,	which	is	what	the		ship	captain	would	need,	for	
example	to	detect	and	sail	along	a	lead.	However,	both	types	
of	data	suffer	from	poor	coverage,	SAR	images	because	the	ac-
quisition	frequency	may	be	limited,	and	visible	data	because	
they are impaired by the frequent cloud coverage and by Arctic 
winter darkness.

For	short-term	forecasts,	it	is	important	to	assess	how	the	sea	
ice is moving. Various sea ice drift products are obtained from 
different	satellites	and	can	be	split	in	two	types:	1)	the	coarse	
resolution,	full	spatial	coverage	products	using	passive	micro-
wave radiometers and scatterometers (most accurate retriev-
als in winter because of the aforementioned limitations of 
passive microwave data during summer; see review by Sumata 
et	al.,	2014);	and	2)	the	high	resolution	but	reduced	coverage	
SAR-based	products	(Kwok	2006).	The	SAR	coverage	has	re-
cently	significantly	improved	by	the	launch	of	the	ESA	Senti-
nel-1 A/B missions offering full daily coverage in high latitudes 
(Korosov	and	Rampal.	2017).	In	comparison,	drifting	buoys	on	
sea	ice	still	provide	the	longest	(more	than	40	years)	data	re-
cord of the IABP but with limited spatial coverage.

Regular and routine sea ice observations are today performed 
by a variety of satellite-based measurements provided by sev-
eral space agencies (as grouped in the matrix in Table 6.1 and 
organised	by	satellite	sensor	classes).	This	has	been	accom-
plished thanks to a large number of major technical and sci-
entific	milestones	and	achievements	over	more	than	40	years,	
as further addressed below. Note that spectrometers and ra-
diometers are only sensing in cloud free conditions.

Started	in	1978,	the	longest	satellite	record	to	cover	the	whole	
Arctic comes from polar orbiting passive microwave sensors 
onboard	the	satellites	SMMR,	SSM/I,	AMSR-E	and	AMSR2	(Cav-
alieri	and	Parkinson,	2012)	which	provide	the	sea	ice	areal	con-
centration. Their main advantage is that they can see through 
clouds	but	still	a	few	issues	remain,	especially	with	the	sum-
mer	ice,	because	the	sensor	does	not	properly	discriminate	
between open water and signatures from wet snow and melt 
ponds. This and other technical issues are accommodated 
differently in a multitude of algorithms that calculate sea ice 
concentrations from the raw passive microwave retrievals (Iva-
nova	et	al.,	2014,	2015).	This	is	an	important	matter	for	data	
assimilation as we will see in Section 6.2.5. The resolution of 
passive	microwaves	depends	on	the	frequency	band	used,	
with the most precise low-frequency channels having the 
largest	footprint	(as	large	as	60	km).	However,	gridded	sea	ice	
concentration data can be found at resolutions between 6 and 

Satellite 
Sensors

Extent and 
concentration

Sea Ice 
type

Sea Ice 
thickness

Snow 
depth

Sea Ice 
drift

Open 
leads

Melt 
ponds

Waves 
in ice

Passive 
microwaves

Scatterometer

SAR

Altimeter  
(radar, laser)

Spectrometer *

Infrared 
Radiometer *

X
First and 

multi-year 
ice

Less than 
50 cm thick 
from L-band

X

(X) (X)

(X) (X)

X

X X X X

Thicker than    
~ 50  cm

X X

Ridges,	
rough and  
flat	ice

(X) (X) (X)X X

Table 6.2. 	 Overview	of	sea	ice	variables	observed	per	group	of	satellite	sensors	listed	in	Table	6.1.	Note	(*)	
that spectrometers and radiometers are only sensing in cloud free conditions. 

(X) X (X)
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Sea ice thickness observations from satellites have recently 
become routinely available. These use different principles 
to	obtain	either:	sea	ice	freeboard	of	thick	ice,	for	example	
from	the	satellite	altimetry	missions	ICESat,	ICESat2	(Kwok	
et	al.,	2007),	CryoSat-2	(Laxon	et	al.,	2013)	and	Sentinel-3;	and	
the	thickness	of	thin	ice,	derived	from	the	SMOS	(Tian-Kunze	
et	al.,	2014).	These	observations	are	quite	complex	and	come	
with	relatively	high	uncertainties	(Zygmuntowska	et	al,	2014,	
Tian-Kunze	et	al.,	2014).	As	discussed	above,	sea	ice	thickness	
is an important source of sea ice predictability on seasonal 
and	longer	timescales.	Other	aspects	of	the	sea	ice,	such	as	
snow	cover,	snow	thickness	and	melt	pond	characteristics,	
may also be important for sea ice forecasts on seasonal and 
longer timescales. Remote sensing is used to characterise 
these	aspects	of	the	sea	ice.	For	example,	snow	depth	infor-
mation is being provided through the NASA Operation Ice-
Bridge	airborne	campaign	(Kurtz	et	al.,	2013),	and	melt	pond	
fractions have been derived from satellite data in the visible 
channels	(Rösel	et	al.,	2012).	Combined	use	of	IceSAT-2,	Cryo-
Sat-2 and Altika has also demonstrated promising capabilities 
to recover reliable snow depth estimates during winter (Guer-
reiro	et	al.,	2016).	Ice	mass	buoys	are	also	providing	in-situ	
measurements of snow depth and other sea ice characteris-
tics	(Richter-Menge	et	al.,	2006;	Perovich	et	al.,	2008).	However,	
only limited work has been done to quantify the possible in-
fluence	of	these	types	of	observations	for	forecasting	systems.	

As	already	indicated	in	Table	6.1,	the	continuity	of	sea	ice	ob-
servations from satellites are indeed assured by the approved 
future	satellite	missions	such	as	CIMR,	Cristal,	and	ROSE-L	Co-
pernicus Sentinel Expansion missions under preparation by 
ESA.	However,	more	dedicated	field	campaigns	are	still	needed	
to	assess	the	uncertainties	of	the	satellite-based	retrievals,	as	
well as to harvest the multi-sensor synergies as can be noted 

from	Table	6.2.	In	turn,	this	would	improve	the	quality	and	use	
of	satellite	data,	and	expectedly	advance	the	forecast	skill	of	
sea ice on seasonal to interannual timescales.

6.2.3. Modelling component

6.2.3.1. Basic equations and modelling choices

Most modern large-scale sea ice models are based on very 
similar foundations. The ice is generally modelled as a contin-
uum	using	a	Eulerian	perspective,	with	the	sea	ice	moving	in	a	
horizontal	plane,	subject	to	both	external	and	internal	forces.	
The dynamic evolution of the sea ice cover is described using 
two continuity equations and the momentum equation. The 
thermodynamic evolution is modelled within each column of 
the grid and is modelled as a heat diffusion process within 
the slab of sea ice. There are substantially varying degrees of 
complexity	in	the	treatment	of	the	thermodynamic	processes,	
ranging from treating all the ice as being of a single thickness 
(Hibler,	1979)	and	treating	the	heat	diffusion	without	resolv-
ing	the	temperature	profile	(Semtner,	1976),	to	using	multiple	
thickness	categories	(Hibler,	1979,	and	numerous	later	varia-
tions)	and	treating	the	heat	diffusion	using	mushy-layer	dy-
namics	(Feltham,	et	al.,	2006).

The main equations for a simple dynamic model of sea ice 
with	two	categories	(ice	and	open	water)	are	the	two	conti-
nuity equations and the momentum equation. The continuity 
equation for mass is:

(6.1)

where m	is	the	sea	ice	mass	per	unit	area,	Sm is a thermo-
dynamic source/sink term and v is velocity. In the case of a 
single sea ice category the continuity equation for the sea ice 
distribution takes the basic form:

(6.2)

with A is the sea ice concentration and SA is a source/sink 
term.	In	addition,	the	condition	A≤1 is imposed. This can 
be interpreted as a ridging condition since m can increase 
even if A	does	not	(Hibler,	1979).	Together	these	equations	
describe	the	advection	of	the	sea	ice	in	a	given	velocity	field.	

The momentum equation is generally written as (Connolley 
et	al.,	2004):

(6.3)

Here k̂	is	a	unit	vector	normal	to	the	surface,	τa and τw are the 
air	and	water	stresses,	f	 is	the	Coriolis	parameter,	g is the grav-
itational	acceleration,	∇H is the gradient of the sea surface 
height and σ is the sea ice stress tensor. The acceleration 
term	on	the	left-hand	side	may	be	set	to	zero,	depending	on	

Figure 6.3.  Illustration of a vertical temperature 
profile	in	a	column	consisting	of	sea	ice	of	thick-
ness hi and topped by snow of depth hs. The heat 
conduction equation is discretized in the vertical 
by	Δz-thick	levels.	(adapted	from	Lisæter	2009).
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Figure 6.4. 	 Left:	a	schematic	example	of	an	ice	thickness	distribution,	the	thickness	classes	are	in	x-axis	and	
the	y-axis	relates	to	the	area	concentrations.	The	continuous	distribution	is	shown	with	a	solid	line,	while	the	
discretized	version	is	shown	in	filled	bars.	Right:	illustration	of	the	subgrid-scale	ice	thickness	distribution	in	a	
sea	ice	model	(only	two	classes	of	3	and	4	m	thickness	for	the	sake	of	illustration)	(adapted	from	Lisæter,	2009).	

the model implementation. The last term on the right hand 
side ∇·σ,	describes	forces	due	to	internal	stress	while	the	
other terms are all external factors. Wind and water stresses 
are	generally	treated	as	quadratic	drag	(e.g.,	McPhee,	1975).	
In	the	absence	of	internal	stress,	the	sea	ice	is	in	“free	drift”	
and	the	model	simplifies	drastically.	Free	drift	forecasts	have	
therefore	been	used	for	a	long	time	(Grumbine	1998)	are	still	
used operationally. 

The thermodynamic equation is the heat diffusion equation:

(6.4)

where ρc is the heat capacity of sea ice or snow and k is 
the heat conductivity. This equation can be solved in var-
ious	ways	(see	Figure	6.3)	(e.g.,	Maykut	and	Untersteiner,	
1971;	Semtner,	1976;	Bitz	and	Libscomb,	1999;	Winton,	2000;	
Huwald	et	al.,	2005),	discretized	in	the	vertical	(Figure	6.3).	
These take into account different physical properties and nu-
merical solutions in solving the equation.

In	addition	to	these	grid-scale	quantities,	many	models	con-
sider various sub-grid scale information and parameterisa-
tions. The most important of those is arguably the ice thick-
ness	distribution	(ITD).	This	assumes	that	each	grid	cell	of	

the	model	contains	not	is	of	uniform	thickness,	but	of	varying	
thicknesses described by an ice thickness distribution g (see 
Figure	6.3).	This	is	in	principle	a	continuous	distribution	of	
thicknesses,	which	is	modified	through	dynamic	and	thermo-
dynamic processes. The governing equation of evolution of 
the	ice	thickness	distribution	is	(e.g.,	Thorndike	et	al.,	1975):

(6.5)

where f	is	the	thermodynamic	growth	or	melt	rate,	h is the 
ice	thickness,	and	𝚿 is a mechanical redistribution function.

In	practice,	sea	ice	models	must	use	a	discretized	version	
of	the	ice	thickness	distribution,	resulting	in	models	with	
several	distinct	thickness	categories	(Figure	6.4	right,	for	a	
top	view	of	a	grid	cell).	The	thickness	distribution	then	be-
comes	(Bitz	et	al.,	2001):

(6.6)

where M	is	the	number	of	thickness	categories,	Mi is the 
thickness of category i,	and	δ(h)	is	the	Dirac	delta	func-
tion.	Various	implementations	exist,	but	the	one	from	Bitz	
et	al.,	(2001)	with	five	thickness	categories	remains	a	pop-
ular choice.
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In	addition	to	these	two	basic	components,	a	large	number	
of	sub-grid	scale	processes	can	and	should	be	represented,	
depending on the use cases for each model. These include 
simulation	of	melt	points	(Flocco	et	al.,	2010;	Hunke	et	al.,	
2013),	changes	in	atmospheric	and	oceanic	drag	due	to	sea	
ice	roughness	(Tsamados	et	al.,	2014),	and	salt	rejection	
from	freezing	sea	ice	(Vancoppenolle	et	al.	2009).

6.2.3.2.  Sea ice rheology

The relationship between the internal stress and resulting 
deformation	is	referred	to	as	rheology.	Basically,	all	con-
tinuum,	geophysical-scale	sea	ice	models	currently	employ	
the	VP	rheology	proposed	by	Hibler	(1979)	or	some	direct	
descendant of that work. The VP rheology treats the sea ice 
as a continuum and assumes it deforms in a viscous man-
ner with a high viscosity until the internal stress reaches a 
plastic	threshold,	determined	by	a	yield	curve	which	usually	
has	an	elliptic	shape	(see	Figure	6.5).	Several	important	im-
provements have been made to the original VP rheology (e.g. 
Hunke	and	Dukowicz,	1997;	Lemieux	et	al.,	2010;	Bouillon	et	
al.,	2013;	Kimmritz	et	al.,	2017),	but	the	physical	principles	re-
main the same.

The VP rheology has enjoyed tremendous success and is used 
for time scales from days to centuries and spatial scales from 
tens	of	kilometres	to	basin	scales.	However,	the	VP	rheology	
is not without faults when it comes to both the underlying 
assumptions	(see	in	particular	Coon	et	al.,	2007)	and	the	re-
sults	it	produces.	In	model	inter-comparison	studies,	there	
is generally a very large spread - well beyond observed vari-
ability	-	in	key	prognostic	variables	such	as	sea	ice	thickness,	
concentration,	and	drift	(Chevallier	et	al.,	2017;	Tandon	et	al.,	
2018).	The	sharp	gradients	in	velocities,	which	are	known	as	
LKFs	that	are	related	to	ridge	and	lead	formation,	are	also	
poorly reproduced in any VP-based model running at a coars-
er resolution than about 2 km - a resolution that is an order 
of magnitude higher than the observational data (Spreen et 
al.,	2017;	Hutter	et	al.,	2019).

Therefore,	several	authors,	such	as	Tremblay	and	Mysak	
(1997),	Wilchinsky	and	Feltham	(2004),	Schreyer	et	al.	(2006),	
Girard-Ardhuin	and	Ezraty	(2012),	Dansereau	et	al.	(2016),	and	
Ólason	et	al.	(2022),	have	suggested	alternative	approaches	
to the VP rheology. The EAP rheology of Wilchinsky and 
Feltham	(2004)	was	implemented	in	the	CICE	model	(Tsama-
dos	et	al.,	2013)	and	has	been	used	in	several	studies,	al-
though	it	was	not	widely	adopted	yet	(Bouchat	et	al.,	2021;	
Hutter	et	al.	2021).	The	brittle	rheologies	of	Girard	et	al.	(2011),	
Dansereau	et	al.	(2016),	and	Ólason	et	al.	(2022)	have	all	been	
implemented	in	the	neXtSIM	model	(Bouillon	and	Rampal	
2015;	Rampal	et	al.,	2019;	Ólason	et	al.,	2022)	and	used	for	
forecasting	and	scientific	research	by	the	team	involved	in	
the	model.	The	current	neXtSIM	version	uses	the	BBM	rheol-
ogy	of	Ólason	et	al.	(2022).

6.2.3.3. Community sea-ice models

Practically all sea ice models used in modern forecasting 
platforms are based on the principles described above. They 
use a Eulerian reference frame and use some version of the 
VP	or	the	Elastic-Viscous-Plastic	(EVP)	rheologies.	The	ther-
modynamic growth and melt of ice are described through the 
diffusion	of	heat	between	ocean	and	atmosphere,	through	
the	ice.	As	such,	they	all	follow	the	same	general	design	phi-
losophy. The main differences exist in the form of different 
choices of parameterisation and differences in data assimi-
lation approaches.

Today,	the	CICE	model	(e.g.	Hunke	et	al.,	2021)	is	likely	the	
most widely used sea ice model for operational forecasts. 
This model was developed at the Los Alamos National Lab-
oratory and was originally designed to be part of the CCSM. 
Thanks	to	its	clean	and	modular	design,	the	model	has	been	
used	in	other	multiple	modelling	systems,	as	a	stand-alone	
model,	part	of	sea	ice-ocean	models,	and	part	of	climate	and	
earth-system models. The LIM and SI3 models (Rousset et 
al.,	2015),	which	are	part	of	the	NEMO	modelling	system,	are	
also	very	widely	used,	but	only	within	the	NEMO	modelling	
system. Other sea-ice models include the SIS (Adcroft et 
al.,	2019),	which	is	part	of	the	GFDL	ocean	modelling	system	
MOM,	the	MITgcm	sea-ice	model	(Losch	et	al.,	2010)	and	the	
FESOM	sea-ice	model	(FESIM,	Danilov	et	al.,	2015).

In	contrast,	only	a	few	stand-alone	sea	ice	models	have	
used	moving	Lagrangian	coordinates	(Hopkins	2004),	among	
which	the	neXtSIM	model	(Rampal	et	al.,	2016;	Rampal	et	al.,	
2019;	Ólason	et	al.,	2022)	and	the	DEMSI	model	(Turner	et	al.,	
2022).	neXtSIM-F	is	unique	among	forecasting	models	as	it	
uses both a moving Lagrangian mesh and a newly developed 
brittle	rheology,	the	Brittle	Bingham-Maxwell	(Williams	et	al.,	
2021;	Ólason	et	al.,	2022).	This	setup	gives	results	that	are	
clearly	different	from	the	classical	systems,	and	arguably	
more	realistic	(Rampal	et	al.,	2016;	Rampal	et	al.,	2019;	Ólason	
et	al.,	2020;	Ólason	et	al.,	2022).	The	key	improvement	is	a	

Figure 6.5.  Two yield curves commonly asso-
ciated with sea ice rheology: in red the elliptic 
yield	curve	used	in	the	(E)VP	models,	and	in	blue	a	
Mohr-Coulomb	yield	curve,	for	instance	used	in	the	
brittle	rheology	of	neXtSIM.
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much more realistic representation of the deformation sta-
tistics	of	the	ice	cover,	which	gives	more	realistic	leads	and	
ridges	in	the	model.	Sea	ice	drift	simulated	by	neXtSIM	is	also	
very	realistic,	and	the	pan-Arctic	ice-thickness	distribution	is	
also	quite	good	(Williams	et	al.,	2021).

6.2.3.4. Coupling of sea ice to atmosphere and ocean 

Sea ice models are integral parts of Earth system models. 
The reason for this is that at high latitudes sea ice insulates 
the relatively warm ocean from the cold atmosphere. Over an 
unbroken	sea	ice	cover,	the	atmosphere	can	therefore	cool	
much more than it could if it was not insulated by the pres-
ence of sea ice. This has an impact on all ocean-atmosphere 
interactions	in	the	polar	regions,	and	therefore	a	global	cli-
mate or Earth system model without a sea ice model can 
simply not function.

Sea	ice	interacts	with	the	atmosphere	through	heat,	mois-
ture,	and	momentum	exchanges.	In	summer	incoming	short-
wave radiation melts the ice surface but would warm up 
the	ocean	surface	in	the	absence	of	sea	ice.	In	winter,	heat	
conduction from the ocean and through the ice only results 
in a very modest amount of heat flux to the atmosphere. 
However,	the	dominant	heat	flux	source	is	radiant	cooling	
through long wave radiation from the surface. This happens 
because surface cooling through long wave radiation is much 
more	efficient	than	the	heat	conduction	through	ice	from	the	
ocean,	resulting	in	a	surface	that	is	colder	than	the	lowest	
layers of the atmosphere. The result is a predominant tem-
perature inversion and a stable atmospheric boundary layer. 
This	reduces	even	further	the	latent	and	sensible	heat	fluxes	
from	the	surface.	However,	openings	in	the	ice	(leads	and	po-
lynyas)	expose	the	relatively	warm	ocean	surface	to	the	at-
mospheric	boundary	layer,	which	causes	mixing	and	breaks	
down the stable boundary layer.

Momentum transfer between ice and atmosphere happens 
through wind stress at the surface of the ice. This is the main 
driver	of	ice	movement	and	exerts	a	drag	on	the	atmosphere,	
slowing down the wind. The amount of momentum transferred 
between ice and atmosphere is determined primarily by the 
stability of the atmospheric boundary layer (Gryanik and 
Lüpkes,	2017)	and	the	roughness	of	the	ice.	While	parameter-
isations and studies on the ice surface roughness have been 
proposed	(Lüpkes	et	al.,	2012,	Castellani	et	al.,	2014),	consis-
tent and basin-scale observations of the atmospheric drag 
coefficient	over	sea	ice	are	currently	unavailable	(Petty	et	al.,	
2017).	In	a	modelling	context,	our	ability	to	predict	ice	surface	
roughness	is	severely	limited,	as	most	ice-atmosphere	cou-
pled models do not take surface roughness into account when 
calculating atmosphere-ice momentum exchanges.

Sea	ice	interacts	with	the	ocean	through	heat,	fresh-water,	
and	salt	exchanges,	as	well	as	momentum	exchanges.	During	

summer,	the	mixed	layer	may	warm	up	due	to	shortwave	
heating through openings in the ice. This makes the ice melt-
ing	from	below,	causing	release	of	both	freshwater	and	salt	
into	the	ocean.	In	winter,	the	atmosphere	extracts	heat	from	
the	ocean	through	the	ice,	causing	new	ice	to	form	at	the	
bottom of the existing ice pack. This causes a net heat and 
freshwater	flux	out	of	the	ocean.	However,	most	of	the	salt	
present	in	the	ocean	cannot	enter	the	ice,	since	the	ice	is	
much fresher than the ocean (ca. 15 vs 30 PSS  for newly 
formed	ice	in	the	Arctic).	This	results	in	a	layer	of	very	salty	
water	forming	below	the	ice,	which	then	sinks	into	the	mixed	
layer. The resulting salt plumes generally reach the bottom of 
the halocline but may also be mixed into the mixed layer in 
the presence of turbulence.

Momentum transfer between ice and ocean happens through 
interface stress between ocean and ice. The momentum cou-
pling of ice and ocean is much stronger than that of ice and 
atmosphere,	and	the	ice	can	be	considered	as	the	first	lay-
er in the ocean’s Ekman spiral. Ice-ocean stress drives most 
geostrophic	flows	in	ice	covered	areas,	as	well	as	some	larger	
scale circulation patterns.

It is also worth mentioning the interaction between sea ice 
and ocean waves. Waves entering the ice pack may mechani-
cally	fracture	it	into	smaller	sea	ice	floes.	This	can	widen	the	
MIZ,	which	may	also	be	viewed	as	the	area	where	the	ice	is	
fractured	by	waves.	Fracturing	the	ice	into	smaller	floes	in-
creases	the	mobility	of	the	ice	cover,	the	momentum	transfer	
between	atmosphere,	ocean,	and	ice,	and	this	may	cause	en-
hanced melting of the ice through lateral melt. The ice in turn 
dampens the waves causing an attenuation of the wave am-
plitude,	so	that	waves	will	only	penetrate	a	limited	distance	
into	the	ice	pack,	depending	on	the	size	of	the	waves	and	the	
compactness of the pack. Wave-ice interactions are of major 
importance	in	the	Southern	Ocean,	but	less	so	in	the	Arctic,	
where much less of the ice edge is exposed to open ocean.

Virtually all climate or earth-system models today include 
sea-ice	models	of	the	classical	description	above,	i.e.,	a	Eule-
rian	reference	frame,	VP	or	EVP	rheology,	and	thermodynam-
ics and column physics of varying complexity. They gener-
ally include very simplistic formulations for the momentum 
transfer	between	atmosphere,	ocean,	and	ice,	and	no	ice-
wave interactions. This is true for all the CMIP6 models. In 
fact,	the	sea	ice	models	used	in	today's	forecasting	models	
were	all	designed	for	climate	modelling,	the	only	current	
exception	is	the	above	mentioned	neXtSIM	model.	It	is	not	
clear how this lineage of the models affects the quality of 
their short-term predictions. It could be argued that a good 
large-scale sea ice model should be able to represent scales 
from ca. 1 km up to the basin scales and from hours to centu-
ries.	This	is	not	the	current	case,	but	the	discussion	of	why	it	
is this way and how to address it is still in its infancy (Hunke 
et	al.,	2020;	Blockley	et	al.,	2020).
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6.2.3.5. Model setup

In	nearly	all	forecasting	platforms,	the	sea	ice	model	is	cou-
pled to an ocean model. There are platforms that use fully 
coupled atmosphere-ocean-sea ice models and only a few 
platforms using a stand-alone sea ice model. The reasons 
for this are partly historical: most sea ice models are written 
as parts of ocean models. Ocean forecasting and re-analysis 
platforms have tended to include a sea ice model from the 
start,	making	a	dedicated	sea	ice	forecasting	platform	redun-
dant.	In	addition,	the	coupling	between	sea	ice	and	ocean	is	
quite	strong,	so	running	a	separate	sea	ice	forecasting	plat-
form	can	bring	its	own	set	of	challenges.	On	the	other	hand,	
a stand-alone sea ice forecasting platform can be run at a 
higher	resolution	and	can	be	used	as	a	technology	preview,	
as	in	the	case	of	the	neXtSIM-F	platform.

6.2.4. Ensemble Modelling

Probabilistic	forecasts,	which	are	widely	used	in	weather	fore-
casting	(Molteni	et	al.,	1996;	Leutbecher	and	Palmer,	2008),	
are still in their infancy in sea ice forecasting. Probabilistic 
predictions rely on an ensemble of model simulations (e.g. a 
Monte	Carlo	simulation)	used	to	describe	the	forecast	uncer-
tainty	stemming	from	errors	in	the	model	parameters,	initial	
and	boundary	conditions,	and	any	external	forcing.	The	re-
sulting range of model outputs is used to retrieve statistical 
information,	such	as	the	ensemble	mean	and	its	spread	(i.e.	
the	standard	deviation),	which	are	thus	used	instead	of	the	
deterministic forecast to estimate the associated uncertainty 
(see	Figure	6.6).	The	multiple	simultaneous	sources	of	errors	
usually make the forecast accuracy of the ensemble mean ex-

ceed	that	of	the	single	deterministic	prediction	(Leith,	1974),	
although the spread often underestimates the actual fore-
cast error when the sources of error are not all adequately 
accounted	for	(Buizza	et	al.,	2005).	Monte	Carlo	techniques	are	
already	common	practice	in	different	areas	(e.g.	Dobney	et	al.,	
2000;	Hackett	et	al.,	2006;	Breivik	and	Allen,	2008;	Melsom	et	
al.,	2012;	Motra	et	al.,	2016;	Duraisamy	and	Iaccarino,	2017)	and	
a common tool for sensitivity analysis.

6.2.5. Data Assimilation systems 

As	introduced	in	the	previous	section,	a	sea	ice	forecast	needs	
to	regularly	assimilate	operational	observations,	which,	at	
present,	are	mostly	satellite	data.	The	most	tempting	way	for-
ward is to insert directly the satellite observed concentrations 
and	thicknesses	into	the	model.	However,	this	is	not	as	easy	as	
it sounds in a complex sea ice code where a large number of 
model	variables	are	dependent	on	each	other.	Hence,	various	
data	assimilation	methods	are	used	for	sea	ice	models,	similar	
to	those	used	for	ocean	physical,	biogeochemical	models	or	
weather	models.	The	most	common	method	is	nudging,	which	
is less disruptive than direct insertion: the data are introduced 
gradually	over	a	given	time	scale	(Lindsay	and	Zhang,	2006).	
The nudged model is then assumed to adjust itself progres-
sively using its own equations. But how much can we rely on 
such adjustments?

When the ocean mixed layer is too warm to sustain sea ice 
but	observations	show	the	presence	of	sea	ice,	a	data	assim-
ilation system updating only sea ice would add sea ice on top 
of	the	warm	waters,	but	the	huge	heat	capacity	of	the	ocean	
would then melt the added sea ice almost immediately. The 

Figure 6.6.  Left: example of ice trajectories from an ensemble of 10 members of 7-days sea ice drift of syn-
thetic	floats	in	an	area	of	the	Barents	Sea	from	the	TOPAZ	system	using	randomly	perturbed	winds.	The	mean	sea	
ice thickness is indicated above. Right: illustration of the ensemble spread in end point positions increasing as a 
function	of	the	forecast	length.	The	uncertainty	growth	depends	strongly	on	the	region	(from	Bertino	et	al.,	2015).	
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ocean mixed layer temperature and salinity must be adjust-
ed accordingly. This suggests that when used in a coupled 
ice-ocean	system,	assimilation	of	sea	ice	observations	ought	
to be coupled in the sense that it should update both the sea 
ice and the ocean properties consistently. In data assimila-
tion	jargon,	this	means	that	the	sea	ice	observation	should	
be projected down to the ocean column using a multivariate 
forecast error covariance matrix.

6.2.5.1. Ensemble-based methods

Dynamical model ensembles are a practical way to estimate 
the covariances mentioned above. In data assimilation ter-
minology,	the	state	vector	must	include	all	prognostic	vari-
ables	of	the	coupled	model	(ocean	and	sea	ice	variables)	
and the ensemble of model runs can be used to calculate 
empirically the cross-covariances between sea ice and ocean 
variables.	Similarly,	observations	of	the	ocean	are	used	to	
update	sea	ice	variables,	although	this	situation	is	less	com-
mon.	Using	an	EnKF	(see	section	5.5.2),	Lisæter	et	al.	(2003)	
demonstrated that the coupled assimilation of sea ice prop-
erties can modify the ocean surface temperatures in rather 
systematic	ways	(adding	sea	ice	cools	down	the	water),	but	
not	ocean	salinities.	However,	according	to	sea	ice	halody-
namics,	the	freezing	of	sea	ice	injects	salty	brines	to	the	
ocean	mixed	layer	and	the	melting	releases	fresher	water,	
but these simple relationships explain only a part of the sea 
ice-salinity cross-covariances and a relationship may arise in 
other situations without the intervention of sea ice thermo-
dynamics: the wind may occasionally blow the sea ice on top 
of	more	saline	water.	Sakov	et	al.	(2012)	showed	how	the	sea	
ice-salinity cross-covariance can change sign on either side 
of the ice edge in the Barents Sea: the sea ice-salinity cor-
relation turns negative on the ocean side because the main 
process responsible for melting is the advection of warm and 
saline	Atlantic	water	near	the	surface,	thus	the	sea	ice-salin-
ity correlation is made through the intermediate of the sur-
face	temperature	variable.	The	last	finding	does	not	hold	in	
locations where the sea ice is isolated from the Atlantic wa-
ter,	but	such	isolation	may	not	remain	forever	if	the	open	
water	mixing	reaches	these	warm	waters	(Rippeth	et	al.,	
2015).	The	assimilation	of	sea	ice	concentrations	with	the	
EnKF	described	in	Lisæter	et	al.	(2003)	was	included	in	the	
near-real-time TOPAZ forecasts in 2003.

6.2.5.2. Variational methods

An alternative to ensemble methods is the use of an adjoint 
model	as	in	the	4D-variational	(4D-Var)	data	assimilation	
method. The adjoint model and the tangent linear model cal-
culate the sensitivity of observed variables to the control 
variables within the duration of the assimilation window. If 
tangent linear and adjoint models are available both for the 
ocean	and	the	sea	ice	models,	they	can	exchange	informa-
tion	about	the	interface	variables,	like	the	heat,	salt,	and	mo-

mentum	fluxes.	Since	these	correlations	are	usually	mono-
variate	at	the	beginning	of	the	assimilation	window,	the	
length of the assimilation window should be as long as pos-
sible. The most recent experiments report successful appli-
cations	of	the	4D4D-VarVAR	in	an	Arctic	regional	configuration	
for durations of one year or longer (Fenty and Heimbach 
2013;	Fenty	et	al.,	2015);	an	adjoint	model	for	the	EVP	sea	ice	
rheology	has	been	introduced	later	(Toyoda	et	al.	2019).	The	
advantage of the 4D-Var method is that it returns one opti-
mised	model	trajectory,	which	is	very	useful	for	oceano-
graphic	interpretation	(Kauker	et	al.,	2009)	and	quantitative	
network	design	(Kaminski	et	al.,	2015)	but,	to	our	knowledge,	
4D-Var is not used for operational sea ice-ocean forecasting.

A	computationally	simplified	variant	of	4D-Var	is	known	as	
3D-Var,	in	which	the	same	increment	is	used	to	compute	the	
model equivalent of the observation-minus-reference state 
differences at all times in the assimilation. Owing to the rel-
atively	low	cost	of	the	scheme	compared	with	the	full	4D-Var,	
3D-Var is commonly used by operational forecasting centres 
around	the	world	(Usui	et	al.,	2006;	Mogensen	et	al.,	2012;	
Hebert	et	al.,	2015;	Tonani	et	al.,	2015;	Waters	et	al.,	2015;	
Smith	et	al.,	2016,	see	Table	6.3	below).

6.2.5.3. Challenges with coupled data assimilation

Coupled multivariate covariances do not necessarily cure all 
the troubles of assimilating sea ice observations. Another 
source of problems is the lack of respect of the traditional 
Gauss-linear assumptions underlying classical data assimi-
lation	methods.	By	definition,	sea	ice	concentrations	have	
bounded	values	between	zero	and	one,	while	other	sea	ice	
tracer	variables	(thickness,	snow	depth)	have	positive	values	
only. Ocean temperatures are not allowed below the freezing 
point. While it should be easy for a monovariate assimilation 
method,	based	on	a	heuristic	covariance	function,	to	pre-
serve monotonicity and therefore the bounds of variables 
(Wackernagel,	2003),	an	ensemble-based	covariance	(or	a	
tangent	linear	model)	may	generate	values	out	of	bounds.	
Honouring	the	bounds	can	be	forced	by	different	means,	ei-
ther by nonlinear transformations of the variables (a method 
called	Gaussian	anamorphosis	in	geostatistics;	Bertino	et	al.,	
2003,	Barth	et	al.,	2015)	or	by	including	inequality	constraints	
in	the	cost	function	(Lauvernet	et	al.,	2009;	Simon	et	al.,	2012;	
Janjic	et	al.,	2014).	Altogether,	the	benefits	of	multivariate	
flow-dependent	covariances	still	outbeat	the	inconvenience	
of values out of bounds.

There are continuous improvements to data assimilation 
methods	in	chaotic	high-dimensional	systems,	such	as	cou-
pled sea ice-ocean models. But new models and new obser-
vations always call for further developments in data assimi-
lation.	In	particular,	sea	ice	models	expressed	in	Lagrangian	
grids with automatic remeshing are uncommon targets for 
data assimilation. Ensemble Kalman Filtering techniques rely 
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on cross-covariances between observed and unobserved 
variables,	which	implies	that	the	grid	cells	have	to	be	unique-
ly	identified	across	different	members	of	the	ensemble.	This	
also	 becomes	 difficult	 when	 adaptive	 remeshing	 is	 turned	
on,	unless	 the	Lagrangian	model	output	 is	 interpolated	on	
a	fixed	grid,	at	the	risk	of	smoothing	the	very	localised	kine-
matic	features	(long	cracks,	ridges	and	leads)	that	they	are	
meant	to	simulate	(Aydoǧdu	et	al.,	2019).	Lagrangian	models	
do not offer any easy differentiation/automatic adjoint ca-
pabilities,	thus	preventing	the	use	of	variational	techniques.	
It should also be noted that a coupling framework such as 
CESM	 is	 sufficiently	flexible	 to	allow	several	 instances	of	a	
model	component	to	be	run	(for	example,	the	atmosphere)	
for	each	instance	of	another	(for	example,	the	ocean),	thus	
allowing to use different data assimilation methods for the 
sea	ice,	ocean,	land,	and	atmosphere.	An	important	aspect	in	
view of coupled data assimilation and ensemble forecasting 
is that the uncertainties are consistent across these com-
partments; the error statistics at the base of the atmosphere 
are consistent with those at the surface of the sea ice and 
similarly between the bottom of the sea ice and the ocean 
surface. This is possible to enforce if all components of the 
coupled system use an ensemble to represent the errors.3

3. https://cmems.met.no/ARC-MFC/

6.2.6. Validation strategies

Since a measure of RMS errors of sea ice concentrations de-
pend on arbitrary choices made by the person doing the 
scoring (these errors diminish as more open ocean is includ-
ed	in	the	validation	area),	more	targeted	sea	ice	validation	
metrics express the skill as distance of the forecast from the 
observed	ice	edge	(Dukhovskoy	et	al.,	2015).	In	the	Arctic,	the	
skill of the 24-hour forecast of ice edge location is about 50 
km for the TOPAZ (including both seasonal biases and RMS 
errors,	updated	at	http://cmems.met.no/ARC-MFC/)	and	40	
km down to 30 km depending on the input data sources in 
the	ACNFS	(Hebert	et	al.	2015;	Posey	et	al.,	2015),	although	
both	methods	may	differ	and	be	sensitive	to	special	configu-
rations of the ice edge. The area of discrepancy is accepted 
as an objective metric with the IIEE introduced by Goessling 
et	al.	(2016).	The	dependence	of	such	metrics	on	spatial	
scales can be further included in the evaluation using the 
FSS	(Melsom	et	al.,	2019)	and	an	extension	of	the	IIEE	metric	
proposed	by	Goessling	and	Jung	(2018)	for	the	evaluation	of	
ensemble forecasts of the ice edge. Examples of IIEE and FSS 
are shown in Figure 6.7.

It should be noted that the metrics related to isolines (like 
the	ice	edge,	classically	defined	at	the	15%	ice	concentration	
isoline,	or	at	other	critical	values	such	as	50%	and	85%)	ap-

Figure 6.7. 	 Left:	example	of	areas	of	excess	ice	(A+)	and	missing	ice	(A-)	for	a	given	TOPAZ	forecast	in	the	Euro-
pean Arctic; the validation data is the Norwegian Ice Charts. Right: associated Fraction Skill Scores showing that 
the	forecast	beats	persistence	at	+5	and	+9	days	lead	time	irrespective	of	spatial	scales	for	that	specific	forecast	
(both from 🔗3	of	Copernicus	Marine	Service).	
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ply	also	to	other	isolines,	like	the	frontier	between	FYI	and	
MYI,	or	to	theMIZ/pack	boundary.	Contingency	tables	are	
also a valuable approach to the validation of sea ice concen-
trations	(Smith	et	al.,	2016),	as	well	as	the	threat	scores	or	the	
Heidke Skill Score.

The forecast skills for sea ice drift have received compara-
tively	less	attention	but	errors	in	sea	ice	drift	are	important,	
both for their contribution to the displacement of the sea ice 
edge and for their cumulative contribution to the sea ice 
thickness distribution. Long climate simulations hint for a 
seasonal	dependence	of	the	forecast	skills,	also	noted	in	
free	drift	simulations	(Grumbine	1998).	Biases	of	sea	ice	drift	
have	been	revealed	in	IPCC	simulations	(Tandon	et	al.,	2018)	
related	to	the	seasonal	cycle.	To	our	knowledge,	there	are	no	
signs that these shortcomings are corrected in recent forecast 
models	(Xie	et	al.,	2017,	for	the	TOPAZ	system;	Hebert	et	al.,	2015	
for	the	ACNFS),	although	a	review	of	global	reanalysis	systems	
shows that some models simulate correctly the minimum sea 
ice	drift	in	March	(Chevallier	et	al.,	2017).	Hebert	et	al.	(2015)	also	
noted that the forecast of drifter positions beats persistence 
although	the	forecast	of	drift	speed	does	not,	indicating	that	the	
drift direction is better forecasted than the drift speed. How to 
remedy these shortcomings? Although adjusting the mean 
speed of sea ice can be easily achieved by tuning the drag coef-
ficients,	there	is	no	simple	tuning	that	can	make	the	sea	ice	ac-
celerate over years or shift its seasonal cycle.

The assimilation of sea ice drift data has been so far less 
successful than that of sea ice concentrations: Stark et al. 
(2008)	showed	a	50%	reduction	of	errors	in	ice	speed	but	no	

benefit	to	ice	concentrations	and	Sakov	et	al.	(2012)	indicated	
a low sensitivity of the sea ice drift to external perturbations 
in	the	wind	forcing,	which	points	to	a	shortcoming	of	the	TO-
PAZ4	version	of	the	EVP	sea	ice	rheology.	Qualitatively,	the	
large-scale patterns of sea ice drift can be reproduced by 
such	a	model	(see	a	typical	situation	in	Figure	6.8)	but	the	
observed gradients between areas of low sea ice drift (North 
of	Greenland)	and	strong	sea	ice	drift	(North	of	the	Barents	
Sea)	are	smoothed	by	the	model,	which	tends	to	simulate	
intermediate values of the sea ice drift speed. The forecast of 
24-hours ice trajectories and locations exhibits an RMS error 
of	6.3	km	in	TOPAZ4	(Melsom	et	al.,	2015),	which	does	not	
seem	to	beat	a	simple	free	drift	predictor	(5	km	in	Grumbine,	
1998).	It	should	be	noted	that	the	validation	is	done	against	
different data sources (sea ice drift from satellite SAR images 
versus	IABP	buoys)	and	at	different	periods	(years	2012-2015	
versus	80’s	and	90’s	decades).	The	SIDFEx	(Goessling	et	al.,	
2020),	carried	out	in	the	framework	of	the	Multidisciplinary	
drifting	Observatory	for	the	Study	of	Arctic	Climate	(MOSAiC)	
ice	camp,	has	been	the	first	to	collect	forecasts	from	interna-
tional systems and has shown that a consensus forecast 
could be successfully used to order detailed satellite images 
of	the	ice	camp	in	advance.	Beyond	the	use	of	RMS	errors,	
several alternative metrics for sea ice drift validation have 
been	reviewed	by	Grumbine	(2013).	Validation	metrics	for	an	
ensemble of trajectories from a probabilistic ice drift fore-
cast	have	been	proposed	by	Rabatel	et	al.	(2018)	and	refined	
in	Cheng	et	al.	(2020)	based	on	an	analogy	with	Search	and	
Rescue	operations,	in	which	the	ensemble	of	trajectories	de-
fine	a	search	ellipse;	the	success	of	the	forecast	is	the	prob-
ability of containment of the target inside the ellipse.  

Figure 6.8. 	 Typical	Example	of	a	two-day	sea	ice	drift	from	satellite	observations	(OSI-SAF,	left)	and	a	model	
(TOPAZ4,	right)	(courtesy	of	A.	Melsom,	MET	Norway).	
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The forecast of sea ice thickness also suffers from excessive 
smoothness: thick sea ice is too thin and thin sea ice is too 
thick	(Johnson	et	al.,	2012)	and	errors	reach	easily	one	to	two	
metres. There is a dynamical contribution to these errors 
with the too high sea ice drift speed North of Greenland ex-
aggerating the transport of thick sea ice into the Beaufort 
Gyre.	However,	thermodynamic	contributions	cannot	be	ex-
cluded	either	(in	particular	from	snow	and	melt	ponds).	More	
generally,	any	error	in	the	model	initial	conditions,	atmo-
spheric and ocean boundary conditions or its inherent param-
eters	will	eventually	accumulate	in	sea	ice	thickness	biases,	
which means that different errors can cancel each other 
and yield a correct sea ice thickness for the wrong reasons. It 
is worth stressing the important role of snow on sea ice as an 
effective	insulator,	its	presence	can	inhibit	both	the	growth	
and melt of sea ice and thus reduce its seasonal cycle. Snow 
predictions in sea ice-ocean models are very dependent on 
the quality of precipitation from weather analyses and fore-
casts	which	are	difficult	to	validate	and	usually	vary	from	one	
product	to	another	(Lindsay	et	al.,	2014).

6.2.7. Outputs

Information on formats and types of outputs by all kinds of 
OOFS can be found in Chapter 4.	In	this	Section,	we	list	the	
variables related to sea ice forecasts:

• sea	ice	concentration	(SIC)
• sea	ice	thickness	(SIT)

• sea	ice	drift	velocity	in	x-	and	y-	directions	(SIUV)	
• snow	depth	(SNOW)
• sea ice age 
• sea	ice	albedo	(SIALB)
• sea ice temperature 

Sea ice forecasting systems generally comply with CF standards. 
The CF metadata conventions are a widely used standard for 
atmospheric,	ocean,	and	climate	data.	Standard	names	are	de-
fined	in	a	CF	Standard	Name	Table	(see	🔗4 ).	Standard	vari-
able names from the CMIP nomenclature can be found in 
Notz	et	al.	(2016).

6.2.8. Examples of  operational sea ice 
forecasting systems

Most present day short-term forecast systems (listed in Table 
6.3)	assimilate	sea	ice	concentration	and	are	therefore	expect-
ed to perform well at forecasting the ice edge. These systems 
include	 the	Canadian	RIOPS	 (Smith	et	 al.,	 2021),	 the	United	
States	 ACNFS/GOFS3.1	 (Hebert	 et	 al.,	 2015),	 the	 Italian	
GOFS16	(Iovino	et	al,.	2016)	the	Global	and	the	Arctic	Marine	
Forecasting	System	(TOPAZ,	Sakov	et	al.	2012)	by	the	Coperni-
cus	Marine	Services.	Stand-alone	sea	ice	models,	like	neXtSIM-F	
(Williams	et	al.,	2021),	are	also	used	for	forecasting	purposes	
and,	given	that	their	control	vector	excludes	the	ocean,	they	
can	be	initialised	more	flexibly	than	coupled	ice-ocean	sys-
tems. Baltic forecasting systems are omitted for brevity. 
Ocean data assimilated are also omitted from Table 6.3.

4. http://cfconventions.org/standard-names.html

Table 6.3.  List of present-day short-term global and Arctic forecast systems. Note that the output spatial 
resolution may differ from the native resolution.

WebsiteVariablesAssimilation (method 
and sea ice data)

ModelResolution 
(km)

SystemArea

http://www.oceanguide.org.cn/
IceIndexHome/ThicknessIce

https://polar.ncep.noaa.gov/
global/

https://mag.ncep.noaa.gov/
model-guidance-model-
parameter.php?group=Model%20
Guidance&model=ICE-
DRIFT&area=POLAR&ps=area#

Arctic

Global

Arctic

ArcIOPS

RTOFS

NOAA (Bob 
Grumbine)

18 km

3.5 km

N/A

MITgcm

HYCOM-CICE5

Free drift

LESTKF	SIC,	SIT

3DVAR SIC

N/A

SIC,	SID,	SIT

SIC,	SIT,	SIUV

SIUV
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WebsiteVariablesAssimilation (method 
and sea ice data)

ModelResolution 
(km)

SystemArea

https://marine.copernicus.eu/

https://www.ecmwf.int/en/
forecasts/datasets/set-i

https://marine.copernicus.eu/

https://ads.nipr.ac.jp/venus.
mirai/#/mirai

https://science.gc.ca/eic/
site/063.nsf/eng/h_97620.html

CONCEPTS - Science.gc.ca

https://www7320.nrlssc.navy.
mil/GLBhycomcice1-12

http://ocean.dmi.dk/models/
hycom.uk.php

Global

Global

Global

Arctic**

Arctic

Global

Global

Arctic

Global

MOi

ECMWF

Met	Office	
coupled DA

VENUS

RIOPS

GIOPS

GOFS3.1

DMI

Met	Office	
FOAM

3.5 km

12 km

12 km

2.5km

3.5 km

12 km

3.5 km

10 km

3.5 km

NEMO-LIM2

NEMO-LIM2

NEMO-CICE5

IcePOM

NEMO-CICE4

NEMO-CICE4

HYCOM-CICE4

HYCOM-CICE4

NEMO-CICE5

SEEK SIC

3DVAR SIC

3DVAR SIC

N/A

3DVAR SIC

3DVAR SIC

3DVAR SIC

Nudging SIC

3DVAR SIC

SIC,	SIT,	SIUV

SIC,	SIT

SIC,	SIT,	SIUV

SIC,	SIT

N/A

N/A

SIC,	SIT,	SIUV

N/A

N/A

*	Note	that	the	resolution	of	a	Lagrangian	triangular	mesh	is	not	comparable	to	square	grids,	thus	the	output	resolution	is	3	km.	 
** VENUS is deployed on demand.

https://marine.copernicus.eu/Arctic neXtSIM-F 7.5 km* neXtSIM Nudging SIC SIC,	SIT,	SIUV,	
SNOW

https://marine.copernicus.eu/Arctic TOPAZ4 12.5 km HYCOM-CICE3 EnKF	SIC,	SIUV,	SIT SIC,	SIT,	SIUV.	
SNOW,	SIALB
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