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6.1.	  
General introduction to sea ice models 

6.1.1.	 Objective, applications and beneficiaries

The main objective of an operational sea ice forecasting sys-
tem is to provide users with a reliable estimate of the state 
of the ice cover and its temporal evolution. To meet this pur-
pose, the system needs to be coupled to, or use data from, 
ocean and atmosphere forecasting systems. Some form of 
data assimilation is also required to counteract errors due 
to the chaotic nature of the atmosphere-ocean-ice system. 
Users of sea ice forecasting systems are either stakeholders 
operating in the Arctic or downstream service providers who 
use the information as an input to their own services. With a 
changing climate and a warming Arctic, the number of stake-
holders interested in operating in that region is growing.

The Arctic is getting warmer with temperatures rising at ap-
proximately twice the rate of the global average (Overland et 
al., 2016) but also more attractive for business as its natural 
resources are becoming available for exploitation and trans-
port for the first time in our history. These include about 13% 
of the world’s oil and gas resources as estimated by the Unit-
ed States Geological Survey (Gautier et al., 2009), gold and 
other metals, and 5.5% of the freshwater resources stored on 
Greenland (Kundzewicz et al., 2007). Changing environmental 
conditions are modifying ecosystems in diverse ways. In the 
Barents Sea, the cod are thriving thanks to warming condi-
tions (Kjesbu et al., 2014). A migration behaviour of boreal 

generalist fishes to cooler waters is also observed in the Ber-
ing Sea (Mueter and Litzow, 2008). These changes have impli-
cations for fisheries management and more generally for the 
Arctic ecosystem. Cruise tourism in the Arctic is also devel-
oping fast since operators can offer comfortable icebreaker 
cruises all the way to the North Pole. 

The NSR along the Russian coast of the Arctic, which was 
heavily used by the Soviet Union until the 1990’s, could again 
become an attractive alternative to reach East Asia from West-
ern Europe. The route is indeed shorter than the one crossing 
Suez Passage (17000 km instead of 22000 km for a Rotter-
dam-Shanghai voyage) and would save fuel. However, in case 
of accidents, cargo and fuel would pose serious threats for 
the Arctic environment. Coastguards and navies of the Arctic 
nations must then be prepared for assisting vessels, perform-
ing search and rescue operations, and remediating oil spills 
in ice-infested waters, with frequently poor communication 
capabilities that may hinder access to new information.

The oil and gas exploration and production need sea ice fore-
casting both on local scales, to simulate individual ice floes 
on the theatre of their operations, and on large scales, to pre-
dict the time of the freeze up and break-up of the ice. It is 
expected that the exploration and production activities will be 
more active in relatively mild ice conditions than in severe ice 
conditions, which means that forecasts will have higher value 

Figure 6.1.		 Pack ice showing a pressure ridge on the left; Marginal Ice Zone with ice floes on the right. (Pho-
tos: E. Storheim, INTAROS/NERSC). 

CHAPTER 6. SEA ICE MODELLING 126



for the MIZ than for the ice pack. The MIZ, defined as the 
ice-covered region under the influence of surface waves from 
the open ocean, is particularly in need of forecasts to prevent 
risks such as ice floe’s projections under the action of waves.

There are fewer stakeholder interests in the Southern Ocean, 
due to the reduced commercial activities in that region. How-
ever, ice-ocean predictions can provide information for tour-
ism or scientific operations in the region, including access to 
Antarctic research stations and support for scientific research 
vessels. The complex rescue of a joint tourist-research vessel 
stuck within the Antarctic sea ice in December 2013 (A. 
Luck-Baker, BBC News, 21 January 2014, 🔗1), requiring assis-
tance from two icebreakers and a helicopter, highlighted the 
need for reliable predictions even in such a remote region. 
On longer timescales, changing sea ice conditions have im-
plications for ice-dependent wildlife in the region, such as 
emperor penguins (e.g., Jenouvrier et al., 2012), which raises 
associated wildlife management concerns. 

The shipping industry is primarily concerned with very de-
tailed ice concentration, thickness and compression (and mar-
ginally snow depths, because deep snow can also impede the 

 

1. https://www.bbc.com/news/science-environment-25833307

progression of an icebreaker). On the other hand, in the af-
termath of oil spills in ice-infested waters, search and rescue 
operations and forecasting are both dependent on ice motion 
and their diffusive properties that increase the search radi-
us with time. The question of spatial and temporal resolution 
is especially critical for the latter case because of the strong 
scale-dependence of sea ice deformation rates (Rampal et al., 
2008). In addition, the diffusion is higher in the chaotic MIZ 
than in the ice pack (Figure 6.1). The oil industry would ulti-
mately need a detailed forecast of the position of each ice floe 
surrounding their operations for the day-to-day management 
of their activities, which can be only delivered by discrete-el-
ement models (Herman 2015, Rabatel et al., 2015). How to nest 
discrete-element models into the continuum sea ice models, 
considered in this chapter, remains an open question.

6.1.2.	 Fundamental theoretical background

The physical processes simulated by sea ice models are com-
monly split into two: vertical processes, related to thermody-
namic growth and melt, and mechanical and dynamical pro-
cesses giving rise to horizontal movement of ice (Figure 6.2).2

2. https://www.lanl.gov/discover/science-briefs/2021/
March/0322-cice.php

Figure 6.2.	 	 A CICE Consortium graphic of sea-ice physics illustrates the complexity and breadth of variables 
at play (From 🔗2).
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The thermodynamic growth and melt of ice can be thought of 
as the result of the diffusion of heat between ocean and atmo-
sphere, through the ice. Additional complications arise primar-
ily due to the presence of salt or brine pockets in the ice, and 
the presence of snow. The brine pockets affect the heat conduc-
tivity and heat capacity of the ice, while both heat conductivity 
and heat capacity of the snow, as well as its density, are affected 
by the state and type of snow, as well as snow metamorphosis.

The basics of thermodynamic modelling of sea ice have been 
well established since the early 70s (Maykut and Untersteiner, 
1971), with the notable improvement in theoretical understand-
ing brought by the application of mushy-layer theory to sea ice 
(Feltham et al., 2006), and substantial work relating to the dy-
namics of brine drainage and the multi-phase nature of sea ice 
(Vancoppenolle et al., 2007; Notz and Worster, 2009; Griewank 
and Notz, 2013). In terms of model development though, prog-
ress has been made in improving numerical performance and 
in technical aspects, such as conservation of heat, energy, and 
enthalpy (e.g., Semtner, 1976; Bitz and Libscomb, 1999; Winton, 
2000; Huwald et al., 2005). Recently, the more advanced multi-
phase physics have also found its way into large-scale sea-ice 
models (Turner et al., 2013; Turner and Hunke, 2015).

The fundamentals of ice dynamics modelling are less firmly 
rooted in basic theoretical understanding. While most of the 
terms of the momentum equation are well understood and fol-
low the basic formulation of the Navier-Stokes equation on a 
rotating sphere, the formulation of internal stresses is less cer-
tain. These describe the response of the ice to external forcing 
and are, as such, at the heart of sea ice dynamical modelling.

Sea ice is a solid material and, as such, can only move once 
fractured or broken. In most sea ice models this is taken into 

account by assuming a rate-independent (von Mises) plas-
ticity. This approach was originally proposed by Coon et al. 
(1974) but reshaped into a more computationally tractable 
form in the viscous-plastic model proposed by Hibler (1979), 
in which the ice is assumed to deform in a linear-viscous 
manner until it reaches a plastic threshold, representing the 
fracturing or breaking of the ice. The fracturing process is, as 
such, simulated explicitly at the grid scale.

However, the process of ice fracturing has been shown to be the 
result of the propagation of fracturing events from small spatial 
scales to large ones (Weiss and Marsan, 2004). This results in 
fractal characteristics of the deformation rates (e.g., Marsan et 
al., 2004; Rampal et al., 2008; Stern and Lindsay, 2009¸ Schulson 
and Hibler, 2017). It means that a sea ice model hoping to cor-
rectly capture the deformation of the ice must account for this 
propagation of fracturing events from small to large scales. As 
the propagation starts at very small spatial and temporal scales 
(Oikkonen et al., 2017), a geophysical scale model must account 
for this through a sub-grid scale parameterisation.

The role and importance of fracture dynamics is still a hotly 
debated subject within the sea ice modelling community. The 
fractal nature of sea ice deformation is generally accepted and 
the scaling of deformation rates is recognised as a potential tool 
and metric for model evaluation and improvement (Rampal et 
al., 2016; Spreen et al., 2017; Hutter et al., 2018; Rampal et al., 2019; 
Bouchat et al., 2021). At the same time, it is still unresolved the 
question of whether to explicitly simulate the fracturing process 
at a very high resolution (Hutter et al., 2019) or to use a sub-grid 
scale parameterisation of the fracturing process at a more mod-
est resolution (Dansereau et al., 2016; Rampal et al., 2016).

6.2.	 
Sea Ice forecast and multi-year systems
6.2.1.	 Architecture singularities

This section and the next one focus on the “forward integra-
tion” spot in the centre of Figure 4.1, designing the architec-
ture of an OOFS.

Sea ice drift forecasts are affected by multiple sources of 
uncertainties. The surface winds are one of the most im-
portant external forces driving the motion of the sea ice 
in the central Arctic (Thorndike and Colony, 1982). More-

over, the uncertainties in the atmospheric reanalysis in 
the Arctic are higher than those at the mid-latitudes, and 
observations are insufficient to estimate the statistical 
characteristics (scale, amplitudes) of the errors. Rabatel 
et al. (2018) investigated the sensitivity of sea ice drift us-
ing neXtSIM-EB for the uncertainties of the surface winds.
They concluded that, in regions of highly compact ice cov-
er, the accuracy of surface wind forcing and sea ice rheol-
ogy are both important for the probabilistic forecast skill 
of sea ice trajectories.
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The ocean below the ice contains large quantities of heat 
and momentum, enough to melt the sea ice and to cause ice 
drift and deformations. Uncertainties in ocean temperature, 
vertical mixing, and currents are then very meaningful for the 
sea ice. The surface ocean salinity is important, as the melt-
ing point temperature depends on it. However, measuring 
ocean properties and particularly currents below the sea ice 
is challenging and uncertainties are rather high. 

Uncertain initial conditions, particularly the sea ice thick-
ness, persist a long time (Chevallier and Salas-Mélia, 2012). 
Blockley and Peterson (2018) showed that the sea ice con-
ditions in spring persist typically a few months into the 
summer and are an important source of large-scale predict-
ability. Errors in the position of the ice edge at the beginning 
of a forecast are usually persistent throughout the forecast 
run and ought to be post-processed for practical use. 

Finally, sea ice models are dependent on their numerous 
model parameters, both in the sea ice dynamics and ther-
modynamics (Urrego-Blanco et al. 2016).

6.2.2.	Input data: available sources and data 
handling

Initialized forecasts are critically dependent on the observa-
tions used for their initialization. To be useful for operational 
systems, observations are needed in near real-time for short-
term forecasts and with limited time lag for seasonal and lon-
ger forecasts. There are unique challenges involved in polar 
observations because of its remoteness, harsh conditions, 
and long polar night. However, forecasting systems are making 
use of satellite observations for initialization, most routinely 
for sea ice concentration. Additionally, new products, such as 
sea ice thickness and drift, are becoming available and may 
ultimately improve the predictive capabilities.

Sea ice reconnaissance flights were mostly occasional until 
after the second world war, with the exception of the USSR 
which started systematic flights with Polar Aviation as ear-
ly as 1929 to monitor the Northern Sea Route. The USA and 
Japan gradually increased the frequency of their flights at 
the turn of the 1950’s and adopted the WMO sea ice charting 
standard proposed in 1952 (WMO, 1970). These flights are still 
used nowadays, mostly in Canada, but have elsewhere been 
superseded by satellite data. 

Passive-μwaves Scatterometer SAR Altimeter Spectrometer InfraredRadi-
ometer

SMOS Metop-B/C ASCAT Sentinel-1A/B CRYOSAT-2 Sentinel-3  A/B Sentinel-3  A/B

Sentinel-3  A/B Sentinel-2  A/B Metop AVHRR

AMSR-2 CFOSAT Radarsat2 Altika Aqua MODIS Aqua MODIS

SMAP Oceansat2 Radarsat  
constellation

ICESat/ICESat 2

CFOSAT*

CIMR Sentinel-1 C/D SWOT Sentinel-3 C/D Sentinel-3 C/D

Rose-L Cristal Sentinel-2 C/D

HARMONY**

Table 6.1.	 	 Overview of operating and approved satellites and sensors for the sea ice observations grouped 
into: ESA and Eumetsat missions (yellow), 3rd Party Missions (green) and new approved missions from ESA and 
NASA/CNES (blue). Spectrometers and infrared radiometers are only sensing in cloud free conditions.  Note 
( *)  that CFOSAT flies a combined altimeter and real aperture radar at five distinct incidence angles up to 10 
degrees. Harmony (**) comprises two bi-static satellites that will fly in convoy with Sentinel-1.

Metop second 
generation

BIOMASS

CFOSAT*
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25 km, which is consistent with current operational models of 
the whole Arctic but still coarse with respect to the needs of 
any operational users navigating in ice-infested waters. SAR 
and satellite data in the visible channels (VIIRS, AVHRR, MODIS, 
SPOT) provide much more detail at spatial resolutions finer 
than 1 km, which is what the  ship captain would need, for 
example to detect and sail along a lead. However, both types 
of data suffer from poor coverage, SAR images because the ac-
quisition frequency may be limited, and visible data because 
they are impaired by the frequent cloud coverage and by Arctic 
winter darkness.

For short-term forecasts, it is important to assess how the sea 
ice is moving. Various sea ice drift products are obtained from 
different satellites and can be split in two types: 1) the coarse 
resolution, full spatial coverage products using passive micro-
wave radiometers and scatterometers (most accurate retriev-
als in winter because of the aforementioned limitations of 
passive microwave data during summer; see review by Sumata 
et al., 2014); and 2) the high resolution but reduced coverage 
SAR-based products (Kwok 2006). The SAR coverage has re-
cently significantly improved by the launch of the ESA Senti-
nel-1 A/B missions offering full daily coverage in high latitudes 
(Korosov and Rampal. 2017). In comparison, drifting buoys on 
sea ice still provide the longest (more than 40 years) data re-
cord of the IABP but with limited spatial coverage.

Regular and routine sea ice observations are today performed 
by a variety of satellite-based measurements provided by sev-
eral space agencies (as grouped in the matrix in Table 6.1 and 
organised by satellite sensor classes). This has been accom-
plished thanks to a large number of major technical and sci-
entific milestones and achievements over more than 40 years, 
as further addressed below. Note that spectrometers and ra-
diometers are only sensing in cloud free conditions.

Started in 1978, the longest satellite record to cover the whole 
Arctic comes from polar orbiting passive microwave sensors 
onboard the satellites SMMR, SSM/I, AMSR-E and AMSR2 (Cav-
alieri and Parkinson, 2012) which provide the sea ice areal con-
centration. Their main advantage is that they can see through 
clouds but still a few issues remain, especially with the sum-
mer ice, because the sensor does not properly discriminate 
between open water and signatures from wet snow and melt 
ponds. This and other technical issues are accommodated 
differently in a multitude of algorithms that calculate sea ice 
concentrations from the raw passive microwave retrievals (Iva-
nova et al., 2014, 2015). This is an important matter for data 
assimilation as we will see in Section 6.2.5. The resolution of 
passive microwaves depends on the frequency band used, 
with the most precise low-frequency channels having the 
largest footprint (as large as 60 km). However, gridded sea ice 
concentration data can be found at resolutions between 6 and 

Satellite 
Sensors

Extent and 
concentration

Sea Ice 
type

Sea Ice 
thickness

Snow 
depth

Sea Ice 
drift

Open 
leads

Melt 
ponds

Waves 
in ice

Passive 
microwaves

Scatterometer

SAR

Altimeter  
(radar, laser)

Spectrometer *

Infrared 
Radiometer *

X
First and 

multi-year 
ice

Less than 
50 cm thick 
from L-band

X

(X) (X)

(X) (X)

X

X X X X

Thicker than    
~ 50  cm

X X

Ridges, 
rough and  
flat ice

(X) (X) (X)X X

Table 6.2.	 	 Overview of sea ice variables observed per group of satellite sensors listed in Table 6.1. Note (*) 
that spectrometers and radiometers are only sensing in cloud free conditions. 

(X) X (X)
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Sea ice thickness observations from satellites have recently 
become routinely available. These use different principles 
to obtain either: sea ice freeboard of thick ice, for example 
from the satellite altimetry missions ICESat, ICESat2 (Kwok 
et al., 2007), CryoSat-2 (Laxon et al., 2013) and Sentinel-3; and 
the thickness of thin ice, derived from the SMOS (Tian-Kunze 
et al., 2014). These observations are quite complex and come 
with relatively high uncertainties (Zygmuntowska et al, 2014, 
Tian-Kunze et al., 2014). As discussed above, sea ice thickness 
is an important source of sea ice predictability on seasonal 
and longer timescales. Other aspects of the sea ice, such as 
snow cover, snow thickness and melt pond characteristics, 
may also be important for sea ice forecasts on seasonal and 
longer timescales. Remote sensing is used to characterise 
these aspects of the sea ice. For example, snow depth infor-
mation is being provided through the NASA Operation Ice-
Bridge airborne campaign (Kurtz et al., 2013), and melt pond 
fractions have been derived from satellite data in the visible 
channels (Rösel et al., 2012). Combined use of IceSAT-2, Cryo-
Sat-2 and Altika has also demonstrated promising capabilities 
to recover reliable snow depth estimates during winter (Guer-
reiro et al., 2016). Ice mass buoys are also providing in-situ 
measurements of snow depth and other sea ice characteris-
tics (Richter-Menge et al., 2006; Perovich et al., 2008). However, 
only limited work has been done to quantify the possible in-
fluence of these types of observations for forecasting systems. 

As already indicated in Table 6.1, the continuity of sea ice ob-
servations from satellites are indeed assured by the approved 
future satellite missions such as CIMR, Cristal, and ROSE-L Co-
pernicus Sentinel Expansion missions under preparation by 
ESA. However, more dedicated field campaigns are still needed 
to assess the uncertainties of the satellite-based retrievals, as 
well as to harvest the multi-sensor synergies as can be noted 

from Table 6.2. In turn, this would improve the quality and use 
of satellite data, and expectedly advance the forecast skill of 
sea ice on seasonal to interannual timescales.

6.2.3.	Modelling component

6.2.3.1.	Basic equations and modelling choices

Most modern large-scale sea ice models are based on very 
similar foundations. The ice is generally modelled as a contin-
uum using a Eulerian perspective, with the sea ice moving in a 
horizontal plane, subject to both external and internal forces. 
The dynamic evolution of the sea ice cover is described using 
two continuity equations and the momentum equation. The 
thermodynamic evolution is modelled within each column of 
the grid and is modelled as a heat diffusion process within 
the slab of sea ice. There are substantially varying degrees of 
complexity in the treatment of the thermodynamic processes, 
ranging from treating all the ice as being of a single thickness 
(Hibler, 1979) and treating the heat diffusion without resolv-
ing the temperature profile (Semtner, 1976), to using multiple 
thickness categories (Hibler, 1979, and numerous later varia-
tions) and treating the heat diffusion using mushy-layer dy-
namics (Feltham, et al., 2006).

The main equations for a simple dynamic model of sea ice 
with two categories (ice and open water) are the two conti-
nuity equations and the momentum equation. The continuity 
equation for mass is:

(6.1)

where m is the sea ice mass per unit area, Sm is a thermo-
dynamic source/sink term and v is velocity. In the case of a 
single sea ice category the continuity equation for the sea ice 
distribution takes the basic form:

(6.2)

with A is the sea ice concentration and SA is a source/sink 
term. In addition, the condition A≤1 is imposed. This can 
be interpreted as a ridging condition since m can increase 
even if A does not (Hibler, 1979). Together these equations 
describe the advection of the sea ice in a given velocity field. 

The momentum equation is generally written as (Connolley 
et al., 2004):

(6.3)

Here k̂ is a unit vector normal to the surface, τa and τw are the 
air and water stresses, f is the Coriolis parameter, g is the grav-
itational acceleration, ∇H is the gradient of the sea surface 
height and σ is the sea ice stress tensor. The acceleration 
term on the left-hand side may be set to zero, depending on 

Figure 6.3.		 Illustration of a vertical temperature 
profile in a column consisting of sea ice of thick-
ness hi and topped by snow of depth hs. The heat 
conduction equation is discretized in the vertical 
by Δz-thick levels. (adapted from Lisæter 2009).
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Figure 6.4.		 Left: a schematic example of an ice thickness distribution, the thickness classes are in x-axis and 
the y-axis relates to the area concentrations. The continuous distribution is shown with a solid line, while the 
discretized version is shown in filled bars. Right: illustration of the subgrid-scale ice thickness distribution in a 
sea ice model (only two classes of 3 and 4 m thickness for the sake of illustration) (adapted from Lisæter, 2009). 

the model implementation. The last term on the right hand 
side ∇·σ, describes forces due to internal stress while the 
other terms are all external factors. Wind and water stresses 
are generally treated as quadratic drag (e.g., McPhee, 1975). 
In the absence of internal stress, the sea ice is in “free drift” 
and the model simplifies drastically. Free drift forecasts have 
therefore been used for a long time (Grumbine 1998) are still 
used operationally. 

The thermodynamic equation is the heat diffusion equation:

(6.4)

where ρc is the heat capacity of sea ice or snow and k is 
the heat conductivity. This equation can be solved in var-
ious ways (see Figure 6.3) (e.g., Maykut and Untersteiner, 
1971; Semtner, 1976; Bitz and Libscomb, 1999; Winton, 2000; 
Huwald et al., 2005), discretized in the vertical (Figure 6.3). 
These take into account different physical properties and nu-
merical solutions in solving the equation.

In addition to these grid-scale quantities, many models con-
sider various sub-grid scale information and parameterisa-
tions. The most important of those is arguably the ice thick-
ness distribution (ITD). This assumes that each grid cell of 

the model contains not is of uniform thickness, but of varying 
thicknesses described by an ice thickness distribution g (see 
Figure 6.3). This is in principle a continuous distribution of 
thicknesses, which is modified through dynamic and thermo-
dynamic processes. The governing equation of evolution of 
the ice thickness distribution is (e.g., Thorndike et al., 1975):

(6.5)

where f is the thermodynamic growth or melt rate, h is the 
ice thickness, and 𝚿 is a mechanical redistribution function.

In practice, sea ice models must use a discretized version 
of the ice thickness distribution, resulting in models with 
several distinct thickness categories (Figure 6.4 right, for a 
top view of a grid cell). The thickness distribution then be-
comes (Bitz et al., 2001):

(6.6)

where M is the number of thickness categories, Mi is the 
thickness of category i, and δ(h) is the Dirac delta func-
tion. Various implementations exist, but the one from Bitz 
et al., (2001) with five thickness categories remains a pop-
ular choice.
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In addition to these two basic components, a large number 
of sub-grid scale processes can and should be represented, 
depending on the use cases for each model. These include 
simulation of melt points (Flocco et al., 2010; Hunke et al., 
2013), changes in atmospheric and oceanic drag due to sea 
ice roughness (Tsamados et al., 2014), and salt rejection 
from freezing sea ice (Vancoppenolle et al. 2009).

6.2.3.2.	 Sea ice rheology

The relationship between the internal stress and resulting 
deformation is referred to as rheology. Basically, all con-
tinuum, geophysical-scale sea ice models currently employ 
the VP rheology proposed by Hibler (1979) or some direct 
descendant of that work. The VP rheology treats the sea ice 
as a continuum and assumes it deforms in a viscous man-
ner with a high viscosity until the internal stress reaches a 
plastic threshold, determined by a yield curve which usually 
has an elliptic shape (see Figure 6.5). Several important im-
provements have been made to the original VP rheology (e.g. 
Hunke and Dukowicz, 1997; Lemieux et al., 2010; Bouillon et 
al., 2013; Kimmritz et al., 2017), but the physical principles re-
main the same.

The VP rheology has enjoyed tremendous success and is used 
for time scales from days to centuries and spatial scales from 
tens of kilometres to basin scales. However, the VP rheology 
is not without faults when it comes to both the underlying 
assumptions (see in particular Coon et al., 2007) and the re-
sults it produces. In model inter-comparison studies, there 
is generally a very large spread - well beyond observed vari-
ability - in key prognostic variables such as sea ice thickness, 
concentration, and drift (Chevallier et al., 2017; Tandon et al., 
2018). The sharp gradients in velocities, which are known as 
LKFs that are related to ridge and lead formation, are also 
poorly reproduced in any VP-based model running at a coars-
er resolution than about 2 km - a resolution that is an order 
of magnitude higher than the observational data (Spreen et 
al., 2017; Hutter et al., 2019).

Therefore, several authors, such as Tremblay and Mysak 
(1997), Wilchinsky and Feltham (2004), Schreyer et al. (2006), 
Girard-Ardhuin and Ezraty (2012), Dansereau et al. (2016), and 
Ólason et al. (2022), have suggested alternative approaches 
to the VP rheology. The EAP rheology of Wilchinsky and 
Feltham (2004) was implemented in the CICE model (Tsama-
dos et al., 2013) and has been used in several studies, al-
though it was not widely adopted yet (Bouchat et al., 2021; 
Hutter et al. 2021). The brittle rheologies of Girard et al. (2011), 
Dansereau et al. (2016), and Ólason et al. (2022) have all been 
implemented in the neXtSIM model (Bouillon and Rampal 
2015; Rampal et al., 2019; Ólason et al., 2022) and used for 
forecasting and scientific research by the team involved in 
the model. The current neXtSIM version uses the BBM rheol-
ogy of Ólason et al. (2022).

6.2.3.3.	 Community sea-ice models

Practically all sea ice models used in modern forecasting 
platforms are based on the principles described above. They 
use a Eulerian reference frame and use some version of the 
VP or the Elastic-Viscous-Plastic (EVP) rheologies. The ther-
modynamic growth and melt of ice are described through the 
diffusion of heat between ocean and atmosphere, through 
the ice. As such, they all follow the same general design phi-
losophy. The main differences exist in the form of different 
choices of parameterisation and differences in data assimi-
lation approaches.

Today, the CICE model (e.g. Hunke et al., 2021) is likely the 
most widely used sea ice model for operational forecasts. 
This model was developed at the Los Alamos National Lab-
oratory and was originally designed to be part of the CCSM. 
Thanks to its clean and modular design, the model has been 
used in other multiple modelling systems, as a stand-alone 
model, part of sea ice-ocean models, and part of climate and 
earth-system models. The LIM and SI3 models (Rousset et 
al., 2015), which are part of the NEMO modelling system, are 
also very widely used, but only within the NEMO modelling 
system. Other sea-ice models include the SIS (Adcroft et 
al., 2019), which is part of the GFDL ocean modelling system 
MOM, the MITgcm sea-ice model (Losch et al., 2010) and the 
FESOM sea-ice model (FESIM, Danilov et al., 2015).

In contrast, only a few stand-alone sea ice models have 
used moving Lagrangian coordinates (Hopkins 2004), among 
which the neXtSIM model (Rampal et al., 2016; Rampal et al., 
2019; Ólason et al., 2022) and the DEMSI model (Turner et al., 
2022). neXtSIM-F is unique among forecasting models as it 
uses both a moving Lagrangian mesh and a newly developed 
brittle rheology, the Brittle Bingham-Maxwell (Williams et al., 
2021; Ólason et al., 2022). This setup gives results that are 
clearly different from the classical systems, and arguably 
more realistic (Rampal et al., 2016; Rampal et al., 2019; Ólason 
et al., 2020; Ólason et al., 2022). The key improvement is a 

Figure 6.5.		 Two yield curves commonly asso-
ciated with sea ice rheology: in red the elliptic 
yield curve used in the (E)VP models, and in blue a 
Mohr-Coulomb yield curve, for instance used in the 
brittle rheology of neXtSIM.
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much more realistic representation of the deformation sta-
tistics of the ice cover, which gives more realistic leads and 
ridges in the model. Sea ice drift simulated by neXtSIM is also 
very realistic, and the pan-Arctic ice-thickness distribution is 
also quite good (Williams et al., 2021).

6.2.3.4.	 Coupling of sea ice to atmosphere and ocean 

Sea ice models are integral parts of Earth system models. 
The reason for this is that at high latitudes sea ice insulates 
the relatively warm ocean from the cold atmosphere. Over an 
unbroken sea ice cover, the atmosphere can therefore cool 
much more than it could if it was not insulated by the pres-
ence of sea ice. This has an impact on all ocean-atmosphere 
interactions in the polar regions, and therefore a global cli-
mate or Earth system model without a sea ice model can 
simply not function.

Sea ice interacts with the atmosphere through heat, mois-
ture, and momentum exchanges. In summer incoming short-
wave radiation melts the ice surface but would warm up 
the ocean surface in the absence of sea ice. In winter, heat 
conduction from the ocean and through the ice only results 
in a very modest amount of heat flux to the atmosphere. 
However, the dominant heat flux source is radiant cooling 
through long wave radiation from the surface. This happens 
because surface cooling through long wave radiation is much 
more efficient than the heat conduction through ice from the 
ocean, resulting in a surface that is colder than the lowest 
layers of the atmosphere. The result is a predominant tem-
perature inversion and a stable atmospheric boundary layer. 
This reduces even further the latent and sensible heat fluxes 
from the surface. However, openings in the ice (leads and po-
lynyas) expose the relatively warm ocean surface to the at-
mospheric boundary layer, which causes mixing and breaks 
down the stable boundary layer.

Momentum transfer between ice and atmosphere happens 
through wind stress at the surface of the ice. This is the main 
driver of ice movement and exerts a drag on the atmosphere, 
slowing down the wind. The amount of momentum transferred 
between ice and atmosphere is determined primarily by the 
stability of the atmospheric boundary layer (Gryanik and 
Lüpkes, 2017) and the roughness of the ice. While parameter-
isations and studies on the ice surface roughness have been 
proposed (Lüpkes et al., 2012, Castellani et al., 2014), consis-
tent and basin-scale observations of the atmospheric drag 
coefficient over sea ice are currently unavailable (Petty et al., 
2017). In a modelling context, our ability to predict ice surface 
roughness is severely limited, as most ice-atmosphere cou-
pled models do not take surface roughness into account when 
calculating atmosphere-ice momentum exchanges.

Sea ice interacts with the ocean through heat, fresh-water, 
and salt exchanges, as well as momentum exchanges. During 

summer, the mixed layer may warm up due to shortwave 
heating through openings in the ice. This makes the ice melt-
ing from below, causing release of both freshwater and salt 
into the ocean. In winter, the atmosphere extracts heat from 
the ocean through the ice, causing new ice to form at the 
bottom of the existing ice pack. This causes a net heat and 
freshwater flux out of the ocean. However, most of the salt 
present in the ocean cannot enter the ice, since the ice is 
much fresher than the ocean (ca. 15 vs 30 PSS  for newly 
formed ice in the Arctic). This results in a layer of very salty 
water forming below the ice, which then sinks into the mixed 
layer. The resulting salt plumes generally reach the bottom of 
the halocline but may also be mixed into the mixed layer in 
the presence of turbulence.

Momentum transfer between ice and ocean happens through 
interface stress between ocean and ice. The momentum cou-
pling of ice and ocean is much stronger than that of ice and 
atmosphere, and the ice can be considered as the first lay-
er in the ocean’s Ekman spiral. Ice-ocean stress drives most 
geostrophic flows in ice covered areas, as well as some larger 
scale circulation patterns.

It is also worth mentioning the interaction between sea ice 
and ocean waves. Waves entering the ice pack may mechani-
cally fracture it into smaller sea ice floes. This can widen the 
MIZ, which may also be viewed as the area where the ice is 
fractured by waves. Fracturing the ice into smaller floes in-
creases the mobility of the ice cover, the momentum transfer 
between atmosphere, ocean, and ice, and this may cause en-
hanced melting of the ice through lateral melt. The ice in turn 
dampens the waves causing an attenuation of the wave am-
plitude, so that waves will only penetrate a limited distance 
into the ice pack, depending on the size of the waves and the 
compactness of the pack. Wave-ice interactions are of major 
importance in the Southern Ocean, but less so in the Arctic, 
where much less of the ice edge is exposed to open ocean.

Virtually all climate or earth-system models today include 
sea-ice models of the classical description above, i.e., a Eule-
rian reference frame, VP or EVP rheology, and thermodynam-
ics and column physics of varying complexity. They gener-
ally include very simplistic formulations for the momentum 
transfer between atmosphere, ocean, and ice, and no ice-
wave interactions. This is true for all the CMIP6 models. In 
fact, the sea ice models used in today's forecasting models 
were all designed for climate modelling, the only current 
exception is the above mentioned neXtSIM model. It is not 
clear how this lineage of the models affects the quality of 
their short-term predictions. It could be argued that a good 
large-scale sea ice model should be able to represent scales 
from ca. 1 km up to the basin scales and from hours to centu-
ries. This is not the current case, but the discussion of why it 
is this way and how to address it is still in its infancy (Hunke 
et al., 2020; Blockley et al., 2020).
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6.2.3.5.	 Model setup

In nearly all forecasting platforms, the sea ice model is cou-
pled to an ocean model. There are platforms that use fully 
coupled atmosphere-ocean-sea ice models and only a few 
platforms using a stand-alone sea ice model. The reasons 
for this are partly historical: most sea ice models are written 
as parts of ocean models. Ocean forecasting and re-analysis 
platforms have tended to include a sea ice model from the 
start, making a dedicated sea ice forecasting platform redun-
dant. In addition, the coupling between sea ice and ocean is 
quite strong, so running a separate sea ice forecasting plat-
form can bring its own set of challenges. On the other hand, 
a stand-alone sea ice forecasting platform can be run at a 
higher resolution and can be used as a technology preview, 
as in the case of the neXtSIM-F platform.

6.2.4.	Ensemble Modelling

Probabilistic forecasts, which are widely used in weather fore-
casting (Molteni et al., 1996; Leutbecher and Palmer, 2008), 
are still in their infancy in sea ice forecasting. Probabilistic 
predictions rely on an ensemble of model simulations (e.g. a 
Monte Carlo simulation) used to describe the forecast uncer-
tainty stemming from errors in the model parameters, initial 
and boundary conditions, and any external forcing. The re-
sulting range of model outputs is used to retrieve statistical 
information, such as the ensemble mean and its spread (i.e. 
the standard deviation), which are thus used instead of the 
deterministic forecast to estimate the associated uncertainty 
(see Figure 6.6). The multiple simultaneous sources of errors 
usually make the forecast accuracy of the ensemble mean ex-

ceed that of the single deterministic prediction (Leith, 1974), 
although the spread often underestimates the actual fore-
cast error when the sources of error are not all adequately 
accounted for (Buizza et al., 2005). Monte Carlo techniques are 
already common practice in different areas (e.g. Dobney et al., 
2000; Hackett et al., 2006; Breivik and Allen, 2008; Melsom et 
al., 2012; Motra et al., 2016; Duraisamy and Iaccarino, 2017) and 
a common tool for sensitivity analysis.

6.2.5.	Data Assimilation systems 

As introduced in the previous section, a sea ice forecast needs 
to regularly assimilate operational observations, which, at 
present, are mostly satellite data. The most tempting way for-
ward is to insert directly the satellite observed concentrations 
and thicknesses into the model. However, this is not as easy as 
it sounds in a complex sea ice code where a large number of 
model variables are dependent on each other. Hence, various 
data assimilation methods are used for sea ice models, similar 
to those used for ocean physical, biogeochemical models or 
weather models. The most common method is nudging, which 
is less disruptive than direct insertion: the data are introduced 
gradually over a given time scale (Lindsay and Zhang, 2006). 
The nudged model is then assumed to adjust itself progres-
sively using its own equations. But how much can we rely on 
such adjustments?

When the ocean mixed layer is too warm to sustain sea ice 
but observations show the presence of sea ice, a data assim-
ilation system updating only sea ice would add sea ice on top 
of the warm waters, but the huge heat capacity of the ocean 
would then melt the added sea ice almost immediately. The 

Figure 6.6.		 Left: example of ice trajectories from an ensemble of 10 members of 7-days sea ice drift of syn-
thetic floats in an area of the Barents Sea from the TOPAZ system using randomly perturbed winds. The mean sea 
ice thickness is indicated above. Right: illustration of the ensemble spread in end point positions increasing as a 
function of the forecast length. The uncertainty growth depends strongly on the region (from Bertino et al., 2015). 
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ocean mixed layer temperature and salinity must be adjust-
ed accordingly. This suggests that when used in a coupled 
ice-ocean system, assimilation of sea ice observations ought 
to be coupled in the sense that it should update both the sea 
ice and the ocean properties consistently. In data assimila-
tion jargon, this means that the sea ice observation should 
be projected down to the ocean column using a multivariate 
forecast error covariance matrix.

6.2.5.1.	Ensemble-based methods

Dynamical model ensembles are a practical way to estimate 
the covariances mentioned above. In data assimilation ter-
minology, the state vector must include all prognostic vari-
ables of the coupled model (ocean and sea ice variables) 
and the ensemble of model runs can be used to calculate 
empirically the cross-covariances between sea ice and ocean 
variables. Similarly, observations of the ocean are used to 
update sea ice variables, although this situation is less com-
mon. Using an EnKF (see section 5.5.2), Lisæter et al. (2003) 
demonstrated that the coupled assimilation of sea ice prop-
erties can modify the ocean surface temperatures in rather 
systematic ways (adding sea ice cools down the water), but 
not ocean salinities. However, according to sea ice halody-
namics, the freezing of sea ice injects salty brines to the 
ocean mixed layer and the melting releases fresher water, 
but these simple relationships explain only a part of the sea 
ice-salinity cross-covariances and a relationship may arise in 
other situations without the intervention of sea ice thermo-
dynamics: the wind may occasionally blow the sea ice on top 
of more saline water. Sakov et al. (2012) showed how the sea 
ice-salinity cross-covariance can change sign on either side 
of the ice edge in the Barents Sea: the sea ice-salinity cor-
relation turns negative on the ocean side because the main 
process responsible for melting is the advection of warm and 
saline Atlantic water near the surface, thus the sea ice-salin-
ity correlation is made through the intermediate of the sur-
face temperature variable. The last finding does not hold in 
locations where the sea ice is isolated from the Atlantic wa-
ter, but such isolation may not remain forever if the open 
water mixing reaches these warm waters (Rippeth et al., 
2015). The assimilation of sea ice concentrations with the 
EnKF described in Lisæter et al. (2003) was included in the 
near-real-time TOPAZ forecasts in 2003.

6.2.5.2.	 Variational methods

An alternative to ensemble methods is the use of an adjoint 
model as in the 4D-variational (4D-Var) data assimilation 
method. The adjoint model and the tangent linear model cal-
culate the sensitivity of observed variables to the control 
variables within the duration of the assimilation window. If 
tangent linear and adjoint models are available both for the 
ocean and the sea ice models, they can exchange informa-
tion about the interface variables, like the heat, salt, and mo-

mentum fluxes. Since these correlations are usually mono-
variate at the beginning of the assimilation window, the 
length of the assimilation window should be as long as pos-
sible. The most recent experiments report successful appli-
cations of the 4D4D-VarVAR in an Arctic regional configuration 
for durations of one year or longer (Fenty and Heimbach 
2013; Fenty et al., 2015); an adjoint model for the EVP sea ice 
rheology has been introduced later (Toyoda et al. 2019). The 
advantage of the 4D-Var method is that it returns one opti-
mised model trajectory, which is very useful for oceano-
graphic interpretation (Kauker et al., 2009) and quantitative 
network design (Kaminski et al., 2015) but, to our knowledge, 
4D-Var is not used for operational sea ice-ocean forecasting.

A computationally simplified variant of 4D-Var is known as 
3D-Var, in which the same increment is used to compute the 
model equivalent of the observation-minus-reference state 
differences at all times in the assimilation. Owing to the rel-
atively low cost of the scheme compared with the full 4D-Var, 
3D-Var is commonly used by operational forecasting centres 
around the world (Usui et al., 2006; Mogensen et al., 2012; 
Hebert et al., 2015; Tonani et al., 2015; Waters et al., 2015; 
Smith et al., 2016, see Table 6.3 below).

6.2.5.3.	 Challenges with coupled data assimilation

Coupled multivariate covariances do not necessarily cure all 
the troubles of assimilating sea ice observations. Another 
source of problems is the lack of respect of the traditional 
Gauss-linear assumptions underlying classical data assimi-
lation methods. By definition, sea ice concentrations have 
bounded values between zero and one, while other sea ice 
tracer variables (thickness, snow depth) have positive values 
only. Ocean temperatures are not allowed below the freezing 
point. While it should be easy for a monovariate assimilation 
method, based on a heuristic covariance function, to pre-
serve monotonicity and therefore the bounds of variables 
(Wackernagel, 2003), an ensemble-based covariance (or a 
tangent linear model) may generate values out of bounds. 
Honouring the bounds can be forced by different means, ei-
ther by nonlinear transformations of the variables (a method 
called Gaussian anamorphosis in geostatistics; Bertino et al., 
2003, Barth et al., 2015) or by including inequality constraints 
in the cost function (Lauvernet et al., 2009; Simon et al., 2012; 
Janjic et al., 2014). Altogether, the benefits of multivariate 
flow-dependent covariances still outbeat the inconvenience 
of values out of bounds.

There are continuous improvements to data assimilation 
methods in chaotic high-dimensional systems, such as cou-
pled sea ice-ocean models. But new models and new obser-
vations always call for further developments in data assimi-
lation. In particular, sea ice models expressed in Lagrangian 
grids with automatic remeshing are uncommon targets for 
data assimilation. Ensemble Kalman Filtering techniques rely 
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on cross-covariances between observed and unobserved 
variables, which implies that the grid cells have to be unique-
ly identified across different members of the ensemble. This 
also becomes difficult when adaptive remeshing is turned 
on, unless the Lagrangian model output is interpolated on 
a fixed grid, at the risk of smoothing the very localised kine-
matic features (long cracks, ridges and leads) that they are 
meant to simulate (Aydoǧdu et al., 2019). Lagrangian models 
do not offer any easy differentiation/automatic adjoint ca-
pabilities, thus preventing the use of variational techniques. 
It should also be noted that a coupling framework such as 
CESM is sufficiently flexible to allow several instances of a 
model component to be run (for example, the atmosphere) 
for each instance of another (for example, the ocean), thus 
allowing to use different data assimilation methods for the 
sea ice, ocean, land, and atmosphere. An important aspect in 
view of coupled data assimilation and ensemble forecasting 
is that the uncertainties are consistent across these com-
partments; the error statistics at the base of the atmosphere 
are consistent with those at the surface of the sea ice and 
similarly between the bottom of the sea ice and the ocean 
surface. This is possible to enforce if all components of the 
coupled system use an ensemble to represent the errors.3

3. https://cmems.met.no/ARC-MFC/

6.2.6.	Validation strategies

Since a measure of RMS errors of sea ice concentrations de-
pend on arbitrary choices made by the person doing the 
scoring (these errors diminish as more open ocean is includ-
ed in the validation area), more targeted sea ice validation 
metrics express the skill as distance of the forecast from the 
observed ice edge (Dukhovskoy et al., 2015). In the Arctic, the 
skill of the 24-hour forecast of ice edge location is about 50 
km for the TOPAZ (including both seasonal biases and RMS 
errors, updated at http://cmems.met.no/ARC-MFC/) and 40 
km down to 30 km depending on the input data sources in 
the ACNFS (Hebert et al. 2015; Posey et al., 2015), although 
both methods may differ and be sensitive to special configu-
rations of the ice edge. The area of discrepancy is accepted 
as an objective metric with the IIEE introduced by Goessling 
et al. (2016). The dependence of such metrics on spatial 
scales can be further included in the evaluation using the 
FSS (Melsom et al., 2019) and an extension of the IIEE metric 
proposed by Goessling and Jung (2018) for the evaluation of 
ensemble forecasts of the ice edge. Examples of IIEE and FSS 
are shown in Figure 6.7.

It should be noted that the metrics related to isolines (like 
the ice edge, classically defined at the 15% ice concentration 
isoline, or at other critical values such as 50% and 85%) ap-

Figure 6.7.		 Left: example of areas of excess ice (A+) and missing ice (A-) for a given TOPAZ forecast in the Euro-
pean Arctic; the validation data is the Norwegian Ice Charts. Right: associated Fraction Skill Scores showing that 
the forecast beats persistence at +5 and +9 days lead time irrespective of spatial scales for that specific forecast 
(both from 🔗3 of Copernicus Marine Service). 
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ply also to other isolines, like the frontier between FYI and 
MYI, or to theMIZ/pack boundary. Contingency tables are 
also a valuable approach to the validation of sea ice concen-
trations (Smith et al., 2016), as well as the threat scores or the 
Heidke Skill Score.

The forecast skills for sea ice drift have received compara-
tively less attention but errors in sea ice drift are important, 
both for their contribution to the displacement of the sea ice 
edge and for their cumulative contribution to the sea ice 
thickness distribution. Long climate simulations hint for a 
seasonal dependence of the forecast skills, also noted in 
free drift simulations (Grumbine 1998). Biases of sea ice drift 
have been revealed in IPCC simulations (Tandon et al., 2018) 
related to the seasonal cycle. To our knowledge, there are no 
signs that these shortcomings are corrected in recent forecast 
models (Xie et al., 2017, for the TOPAZ system; Hebert et al., 2015 
for the ACNFS), although a review of global reanalysis systems 
shows that some models simulate correctly the minimum sea 
ice drift in March (Chevallier et al., 2017). Hebert et al. (2015) also 
noted that the forecast of drifter positions beats persistence 
although the forecast of drift speed does not, indicating that the 
drift direction is better forecasted than the drift speed. How to 
remedy these shortcomings? Although adjusting the mean 
speed of sea ice can be easily achieved by tuning the drag coef-
ficients, there is no simple tuning that can make the sea ice ac-
celerate over years or shift its seasonal cycle.

The assimilation of sea ice drift data has been so far less 
successful than that of sea ice concentrations: Stark et al. 
(2008) showed a 50% reduction of errors in ice speed but no 

benefit to ice concentrations and Sakov et al. (2012) indicated 
a low sensitivity of the sea ice drift to external perturbations 
in the wind forcing, which points to a shortcoming of the TO-
PAZ4 version of the EVP sea ice rheology. Qualitatively, the 
large-scale patterns of sea ice drift can be reproduced by 
such a model (see a typical situation in Figure 6.8) but the 
observed gradients between areas of low sea ice drift (North 
of Greenland) and strong sea ice drift (North of the Barents 
Sea) are smoothed by the model, which tends to simulate 
intermediate values of the sea ice drift speed. The forecast of 
24-hours ice trajectories and locations exhibits an RMS error 
of 6.3 km in TOPAZ4 (Melsom et al., 2015), which does not 
seem to beat a simple free drift predictor (5 km in Grumbine, 
1998). It should be noted that the validation is done against 
different data sources (sea ice drift from satellite SAR images 
versus IABP buoys) and at different periods (years 2012-2015 
versus 80’s and 90’s decades). The SIDFEx (Goessling et al., 
2020), carried out in the framework of the Multidisciplinary 
drifting Observatory for the Study of Arctic Climate (MOSAiC) 
ice camp, has been the first to collect forecasts from interna-
tional systems and has shown that a consensus forecast 
could be successfully used to order detailed satellite images 
of the ice camp in advance. Beyond the use of RMS errors, 
several alternative metrics for sea ice drift validation have 
been reviewed by Grumbine (2013). Validation metrics for an 
ensemble of trajectories from a probabilistic ice drift fore-
cast have been proposed by Rabatel et al. (2018) and refined 
in Cheng et al. (2020) based on an analogy with Search and 
Rescue operations, in which the ensemble of trajectories de-
fine a search ellipse; the success of the forecast is the prob-
ability of containment of the target inside the ellipse.  

Figure 6.8.		 Typical Example of a two-day sea ice drift from satellite observations (OSI-SAF, left) and a model 
(TOPAZ4, right) (courtesy of A. Melsom, MET Norway). 

CHAPTER 6. SEA ICE MODELLING 138



The forecast of sea ice thickness also suffers from excessive 
smoothness: thick sea ice is too thin and thin sea ice is too 
thick (Johnson et al., 2012) and errors reach easily one to two 
metres. There is a dynamical contribution to these errors 
with the too high sea ice drift speed North of Greenland ex-
aggerating the transport of thick sea ice into the Beaufort 
Gyre. However, thermodynamic contributions cannot be ex-
cluded either (in particular from snow and melt ponds). More 
generally, any error in the model initial conditions, atmo-
spheric and ocean boundary conditions or its inherent param-
eters will eventually accumulate in sea ice thickness biases, 
which means that different errors can cancel each other 
and yield a correct sea ice thickness for the wrong reasons. It 
is worth stressing the important role of snow on sea ice as an 
effective insulator, its presence can inhibit both the growth 
and melt of sea ice and thus reduce its seasonal cycle. Snow 
predictions in sea ice-ocean models are very dependent on 
the quality of precipitation from weather analyses and fore-
casts which are difficult to validate and usually vary from one 
product to another (Lindsay et al., 2014).

6.2.7.	Outputs

Information on formats and types of outputs by all kinds of 
OOFS can be found in Chapter 4. In this Section, we list the 
variables related to sea ice forecasts:

•	 sea ice concentration (SIC)
•	 sea ice thickness (SIT)

•	 sea ice drift velocity in x- and y- directions (SIUV) 
•	 snow depth (SNOW)
•	 sea ice age 
•	 sea ice albedo (SIALB)
•	 sea ice temperature 

Sea ice forecasting systems generally comply with CF standards. 
The CF metadata conventions are a widely used standard for 
atmospheric, ocean, and climate data. Standard names are de-
fined in a CF Standard Name Table (see 🔗4 ). Standard vari-
able names from the CMIP nomenclature can be found in 
Notz et al. (2016).

6.2.8.	Examples of  operational sea ice 
forecasting systems

Most present day short-term forecast systems (listed in Table 
6.3) assimilate sea ice concentration and are therefore expect-
ed to perform well at forecasting the ice edge. These systems 
include the Canadian RIOPS (Smith et al., 2021), the United 
States ACNFS/GOFS3.1 (Hebert et al., 2015), the Italian 
GOFS16 (Iovino et al,. 2016) the Global and the Arctic Marine 
Forecasting System (TOPAZ, Sakov et al. 2012) by the Coperni-
cus Marine Services. Stand-alone sea ice models, like neXtSIM-F 
(Williams et al., 2021), are also used for forecasting purposes 
and, given that their control vector excludes the ocean, they 
can be initialised more flexibly than coupled ice-ocean sys-
tems. Baltic forecasting systems are omitted for brevity. 
Ocean data assimilated are also omitted from Table 6.3.

4. http://cfconventions.org/standard-names.html

Table 6.3.	 	 List of present-day short-term global and Arctic forecast systems. Note that the output spatial 
resolution may differ from the native resolution.

WebsiteVariablesAssimilation (method 
and sea ice data)

ModelResolution 
(km)

SystemArea

http://www.oceanguide.org.cn/
IceIndexHome/ThicknessIce

https://polar.ncep.noaa.gov/
global/

https://mag.ncep.noaa.gov/
model-guidance-model-
parameter.php?group=Model%20
Guidance&model=ICE-
DRIFT&area=POLAR&ps=area#

Arctic

Global

Arctic

ArcIOPS

RTOFS

NOAA (Bob 
Grumbine)

18 km

3.5 km

N/A

MITgcm

HYCOM-CICE5

Free drift

LESTKF SIC, SIT

3DVAR SIC

N/A

SIC, SID, SIT

SIC, SIT, SIUV

SIUV
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WebsiteVariablesAssimilation (method 
and sea ice data)

ModelResolution 
(km)

SystemArea

https://marine.copernicus.eu/

https://www.ecmwf.int/en/
forecasts/datasets/set-i

https://marine.copernicus.eu/

https://ads.nipr.ac.jp/venus.
mirai/#/mirai

https://science.gc.ca/eic/
site/063.nsf/eng/h_97620.html

CONCEPTS - Science.gc.ca

https://www7320.nrlssc.navy.
mil/GLBhycomcice1-12
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Arctic
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Met Office 
coupled DA
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GIOPS
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N/A

SIC, SIT, SIUV

N/A

N/A

* Note that the resolution of a Lagrangian triangular mesh is not comparable to square grids, thus the output resolution is 3 km.  
** VENUS is deployed on demand.

https://marine.copernicus.eu/Arctic neXtSIM-F 7.5 km* neXtSIM Nudging SIC SIC, SIT, SIUV, 
SNOW

https://marine.copernicus.eu/Arctic TOPAZ4 12.5 km HYCOM-CICE3 EnKF SIC, SIUV, SIT SIC, SIT, SIUV. 
SNOW, SIALB
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