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Summary
Marine biogeochemistry is the study of essential chemical 
elements	in	the	ocean	(such	as	carbon,	nitrogen,	oxygen,	
and	phosphorus),	and	of	their	interactions	with	marine	or-
ganisms. Biogeochemical cycles are driven by physical trans-
port,	chemical	reactions,	absorption,	and	transformation	by	
plankton	and	other	organisms,	which	form	the	basis	of	the	
oceanic food web.

In	the	last	decades,	the	interest	for	this	cross-disciplinary	
science has greatly increased due to the occurrence of sig-
nificant	changes	in	the	marine	environment	closely	linked	
to the alteration of the biogeochemical cycles in the ocean. 
These	alterations	include	phenomena	such	as	acidification,	
coral	bleaching,	eutrophication,	deoxygenation,	harmful	al-
gal	blooms,	regime	shifts	in	plankton,	invasive	species,	and	
other processes deteriorating water quality and impacting 
the whole marine ecosystem. 

Monitoring and forecasting the biogeochemical and ecosystem 
components	of	the	ocean,	also	referred	to	as	“Green	Ocean”,	
are essential for a better understanding of the current status 
and changes in ocean health and ecosystem functioning. Such 
operational	systems	provide	indicators	useful	to	scientists,	
industry	(e.g.	fisheries	and	aquaculture),	policy	makers	and	
environmental	agencies	for	the	prediction	of	events,	the	man-
agement	of	living	marine	resources,	and	can	support	the	deci-
sion-making process to respond to environmental changes.

This chapter gives an overview of the Green Ocean component of 
OOFS.	 The	 first	 section	 addresses	 the	 objectives,	 applications	
and	beneficiaries	of	the	Green	Ocean	and	introduces	the	funda-
mental theoretical knowledge of marine biogeochemical model-
ling. The second section details and discusses each component 
of a biogeochemical OOFS to guide new forecasters in biogeo-
chemistry. Modelling of higher trophic levels is introduced. Final-
ly,	several	operational	systems	are	mentioned	as	examples.

Figure 9.1.  Threats on marine ecosystems. 
Changes and alterations in the marine envi-
ronment observed in recent decades include 
acidification,	coral	bleaching,	eutrophication,	
deoxygenation,	harmful	algal	blooms,	changes	in	
planktonic	regimes,	invasive	species,	etc.	

9.1.  
General introduction to Biogeochemical models
9.1.1. Objective, applications and beneficiaries

Human	activities,	primarily	the	combustion	of	fossil	fuels,	
cement	production,	and	the	industrial	production	of	nitro-
gen-based	fertilisers,	are	leading	to	ocean	warming,	acidifi-
cation,	deoxygenation,	and	coastal	eutrophication,	thus	put-
ting ever-increasing and compounding pressures on marine 
ecosystems	(Figure	9.1).	

At	the	same	time,	the	ocean	is	serving	as	a	major	sink	of	car-
bon	dioxide	(CO2),	the	most	important	anthropogenic	green-
house	gas.	This	contributes	to	mitigating	global	warming,	but	
the magnitude of this sink is likely to diminish. Our ability to 
quantify these phenomena and project their future course 
hinges on a mechanistic understanding of the biogeochemical 
cycles	of	carbon,	oxygen,	and	nutrients	in	the	ocean	and	how	
they are changing.

The	Marine	BGC,	the	study	of	elemental	cycles	and	their	in-
teractions	with	the	environment	and	living	organisms,	is	a	
multidisciplinary science at the crossroads between ocean 
physics,	chemistry,	and	biology,	and	intersects	with	atmo-
spheric and terrestrial sciences as well as social science and 
environmental	policy.	As	an	example,	Figure	9.2	 illustrates	
the complex carbon cycle in the ocean and the interactions 
between	biological,	chemical,	and	physical	processes.
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Ocean BGC models describe the base of the marine food 
chain from bacteria to mesozooplankton and couple the cy-
cles	of	carbon	(C),	nitrogen	(N),	oxygen	(O2),	phosphorus	(P)	
and	silicon	(Si).	They	mostly	focus	on	plankton,	classifying	
the plankton diversity in accordance with their functional 
characteristics,	 the	so-called	Plankton	Functional	Types	
(PFTs).	Species	at	higher	trophic	levels,	such	as	fish	and	ma-
rine	mammals	play	a	lesser	role	in	elemental	cycling,	they	
are	thus	generally	not	explicitly	represented	in	BGC	models,	
but they are very important for ecosystem models that fo-
cus on the ecology/biology of marine organisms. BGC and 
ecosystem models are sometimes referred to indistinctly 
because they can overlap in their representation of the 

lower	trophic	levels.	Specific	modelling	approaches,	like	
Lagrangian	modelling,	habitat	modelling,	or	food	web	mod-
els,	are	used	to	connect	BGC	with	the	high	trophic	levels	
(e.g.	fish).1

The	implementation	of	accurate	OOFSs	requires	sustained,	
systematic,	and	NRT	observation	from	(sub)mesoscale	to	
large	scale	to	initialise,	parameterize,	and	validate	ocean	
models. NRT information in operational oceanography 
means a description of the present situation with a delay of 
a few minutes to a few days.

1. https://www.ornl.gov/

Figure 9.2.  Cycling of carbon in the marine food chain. Phytoplankton assimilate CO2 via photosynthesis in 
the euphotic zone and are consumed by zooplankton. Zooplankton are the initial prey for many small and large 
aquatic organisms. Carbon is thus transferred further up the food web to higher-level predators. Different 
mechanisms contribute to the export and storage of carbon into the deep ocean. The carbon cycle in the ocean 
is	complex	and	influenced	by	biological,	chemical,	and	physical	processes	(credit:	Oak	Ridge	National	Labora-
tory at 🔗1).
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The forecast of ocean physics has considerably improved in the 
last	decades,	reaching	a	high	level	of	predictability	(Chapter 5).	
The evolving equations governing the physical dynamics are 
based	on	physical	laws,	the	model	parameterizations	are	quite	
well-established,	and	the	abundance	of	observations	for	tem-
perature,	salinity,	and	sea	level	height	offers	a	way	to	improve	
model predictions through data assimilation. Forecasting of the 
Green Ocean has been developed more recently and it has not 
yet	reached	the	same	level	of	maturity,	in	most	cases	being	in-
corporated into already existing physical OOFS. The formulation 
of ecosystem models is still empirical and the scarcity of in-situ 
biological and BGC data critically limits the capabilities to con-
strain their parameterization and to improve their performanc-
es through a robust data-model comparison exercise and data 
assimilation.	The	scarcity	of	data	is	even	more	critical	in	NRT,	
limiting	data	assimilation	to	surface	chlorophyll-a	(Chla)	de-
rived	from	satellite	reflectance	(Fennel	et	al.,	2019).

The advent of in-situ robotic platforms combined with high res-
olution satellite products for the Green Ocean have the poten-
tial	to	palliate	this	deficiency.	For	instance,	the	advent	of	hyper-
spectral satellites is promising in terms of delivery of surface 
information	on	PFTs,	detection	of	harmful	algal	blooms,	and	
benthic	habitat	mapping,	while	the	boost	in	robotic	platforms	
will	offer	huge	opportunities	to	map	the	(deep)	seafloor	with	an	
unprecedented level of details. The combination of marine ro-
botics,	image	analysis,	machine	learning,	new	sensor	develop-
ment,	and	the	coordination	of	robotic	platforms	and	satellite	
sensors	will	constitute	a	significant	breakthrough	in	our	knowl-
edge of marine ecosystems. All this information would need to 
be integrated in models for forecasting and producing high 
quality reanalysis of the Green Ocean to support the production 
of added value products and innovative services. Coordination 
of Ocean OSSEs can help to design the new observing biological 
and	biogeochemical	systems	with	maximal	impact	to	users,	yet	
their	development	is	still	insufficient	and	should	be	encouraged	
(Le	Traon	et	al.,	2019).

Ultimately,	BGC	OOFS	systems	serve	major	environmental	
and	societal	issues,	including	the	Ocean's	role	in	the	global	
carbon cycle and the impacts of natural changes and anthro-
pogenic stressors in the physical-chemical marine environ-
ment on ecosystems and human activities. Applications 
range	from	multi-decadal	retrospective	simulations	(namely,	
“reanalyses”),	operational	analysis	of	the	current	conditions	
(“nowcasts”),	short-term	and	seasonal	predictions	(“fore-
casts”),	scenario	simulations,	and	climate	change	projec-
tions. These integrated systems are essential not only for a 
better understanding of the current status of key biogeo-
chemical and ecosystem processes in the ocean and how 
they	are	changing,	but	also	to	provide	stakeholders,	policy	
makers and environmental agencies with indicators of ocean 
health	in	order	to	take	appropriate	mitigation,	adaptation,	
conservation,	and	protection	measures	for	living	marine	or-
ganisms and their habitats but also for human health.

“A predicted ocean whereby society has the capacity to 
understand	current	and	future	ocean	conditions,	forecast	
change and impact on human wellbeing and livelihoods” is 
an expected outcome of the United Nations Decade of Ocean 
Science	for	Sustainable	Development,	2021-2030	(Ryabinin	et	
al.,	2019),	supported	also	by	the	Sustainable	Development	
Goals	14	(Life	below	water),	8	(Decent	work	and	economic	
growth),	and	9	(Industry,	innovation	and	infrastructure).

9.1.2. Fundamental theoretical background

9.1.2.1. Biogeochemical modelling

Plankton	(including	phytoplankton	and	zooplankton)	are	or-
ganisms	which	are	carried	by	tides	and	currents,	or	do	not	
swim well enough to move against them. They form the base 
of the marine ecosystem and are a central component of the 
BGC models that simulate the cycling of elements through 
seawater and plankton. 

Most	models	take	an	“NPZD”	approach,	simulating:

• Nutrients: substances which organisms require for growth.
• Phytoplankton: microscopic algae which obtain ener-
gy from sunlight through photosynthesis.
• Zooplankton: planktonic animals which obtain energy 
by eating other organisms.
• Detritus: dead and excreted organic matter.

Each	of	these	is	represented	by	one	or	more	state	variables,	
depending on the complexity of the model. Rather than con-
sidering	individual	organisms,	state	variables	represent	con-
centrations of elements such as nitrogen or carbon. They are 
often called tracers because they are transported and dif-
fused by ocean dynamics.

As	with	physical	models,	BGC	models	are	discretized	on	a	grid	
covering the region of interest and require suitable initial and 
boundary	conditions	for	each	state	variable.	At	each	grid	point,	
the evolution of a state variable C is given by the equation:

(9.1)

where ∇ ∙ (CU) and DC are the advection and diffusion terms 
equivalent to those used for temperature and salinity in 
physical models (please refer to Chapter 5).	∇ is the gener-
alised	derivative	vector	operator,	t	is	the	time,	U the vector 
velocity,	and	DC is the parameterization of small-scale phys-
ics for the tracer. The SMS(C) stands for source-minus-sink 
terms for the tracer C and represents the BGC processes 
simulated by the model. Each 1D water column is normally 
treated	independently,	with	lateral	interactions	limited	to	
advection and diffusion. Most BGC models are formulated to 
conserve mass. 
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Figure 9.3. 	 Schematic	of	a	basic	NPZD	model	considering	four	state	variables,	one	for	each	compartment.		

Unlike the Navier-Stokes equations for physical models (Chap-
ter 5),	there	is	no	known	set	of	laws	defining	biological	be-
haviour.	Instead,	empirical	relationships	are	used	to	describe	
observed processes such as growth and mortality.

The basic source-minus-sink terms usually modelled in a 
NPZD	model	(Figure	9.3)	are:

• Phytoplankton growth or Primary production: the 
creation of organic matter through photosynthesis. It 
is	a	function	of	phytoplankton	concentration,	nutrient	
availability,	and	light	availability.	It	can	also	be	regu-
lated by temperature.
• Grazing: zooplankton eating phytoplankton and detritus.
• Mortality:	death	through	natural	causes,	e.g.	virus-
es,	predation	by	higher	trophic	levels	(fish	and	marine	
mammals),	etc.

• Messy feeding:	zooplankton	graze	inefficiently,	and	a	
proportion of organic matter enters the nutrient or de-
tritus pool rather than being ingested by zooplankton.
• Remineralisation: bacteria break down the organic 
matter	in	detritus,	which	is	converted	back	to	nutrients.
• Sinking: detritus sinks through the water column due 
to gravity.

In	this	case,	the	differential	equations	for	phytoplankton	(P),	
zooplankton (Z),	detritus	(D),	and	nutrients	(N)	are	as	follows:

(9.2)

where phytoplankton evolution depends on primary produc-
tion,	grazing	and	mortality;

(9.3)
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where zooplankton evolution depends on grazing and mortality;

 
(9.4) 

where	detritus	evolution	depends	on	mortality,	grazing,	messy	
feeding,	remineralisation	and	sinking;

(9.5)

where	nutrients	evolution	depends	on	primary	production,	
messy	feeding,	and	remineralisation.

µP is the growth rate of phytoplankton due to photosynthe-
sis; mP

 and mz are the mortality rates of phytoplankton and 
zooplankton; GP and GD are the grazing rates of zooplankton 
on phytoplankton and detritus; αD and αN represent the effi-
ciency of the grazing; (1-αD)	and	(1-αN)	the	non-assimilated	
fractions of grazing by zooplankton that return to detritus 
and nutrients; remD is the remineralisation rate of detritus 
and wD is the sinking speed of detritus.

The	exact	equations	used	differ	between	models,	 the	
ones given above are common examples. Other process-
es	are	often	considered	as	well,	notably	respiration,	ex-
cretion,	and	egestion,	which	cause	loss	of	organic	matter.	
Of	course,	additional	processes	may	be	included	in	more	
complex models. 

The processes can be modelled using different mathematical 
forms,	often	with	parameter	values	which	are	uncertain	and	
can be tuned. While sinking and mortality rates are usually 
single	parameters	(linear	functions),	phytoplankton	growth	
rate requires multiple parameters. µP is usually a function of 
nutrients,	light	and	temperature:

(9.6)

µ P 
max

 is	the	maximum	growth	rate,	f (T) is the temperature 
effect,	f (I) and f (N) are the limitation terms due to light and 
nutrients.	Different	formulations	exist	for	each	of	these	terms,	
but usually NPZD-type models characterise nutrient limitation 
of phytoplankton growth rate using Michaelis-Menten kinetics:

(9.7)

K is known as the half-saturation constant for nutrient 
uptake,	 and	N is the nutrient concentration. If nutrient is 
plentifully	available,	then	N/ (K+N) ≈1 and phytoplankton 
growth is not limited by the nutrient.

The state variables of NPZD models represent concentrations 
of	a	given	chemical	element,	often	nitrogen,	with	other	ele-
ments such as carbon derived using constant stoichiometry 

between	carbon,	nitrogen	and	phosphorus,	i.e.	the	Redfield	
ratio	of	106:16:1	(Redfield,	1934).	

More complex models include additional variables for each 
compartment.	Phytoplankton	can	be	split	into	PFTs,	grouping	
together species which perform a similar function within the 
ecosystem	(Le	Quéré	et	al.,	2005).	PFTs	are	often	based	on	
organism	size.	It	 is	also	common	to	separate	out	diatoms,	
which form silicate shells and play an important role in the 
sinking	of	carbon.	In	models,	PFTs	are	distinguished	by	dif-
fering parameters for traits such as maximum phytoplankton 
growth	rates,	grazing,	and	nutrient	affinity.	Zooplankton	can	
also	be	split	into	functional	types,	again	often	based	on	size,	
with different feeding preferences. Note that the current par-
adigm neglects the fact that many plankton are mixotrophs: 
they both photosynthesize and eat other organisms (Flynn et 
al.,	2013;	Glibert	et	al.,	2019).

Variable	stoichiometry	(elemental	ratios)	can	also	be	intro-
duced. Each PFT is then described by separate state variables 
for	each	element,	such	as	nitrogen,	carbon,	and	phosphorus.	

Chla is often included into BGC models as it is the main photo-
synthetic	pigment	found	in	phytoplankton,	and	measurement	
of its concentration in water is used as an indicator of the phy-
toplankton biomass. Chla can be represented as a constant 
ratio	to	the	carbon	biomass,	or	a	variable	ratio	depending	on	
nutrient,	light	levels,	and	temperature	(Geider	et	al.,	1997).

Most models incorporate dissolved inorganic nitrogen as a 
nutrient,	which	includes	nitrate	and	ammonium.	Phosphate	
and	iron	may	be	modelled	too,	and	silicate	if	diatoms	are	a	
PFT. Nutrient inputs from rivers and the atmosphere can also 
be	specified.	Detritus	may	be	split	into	different	sizes,	with	
different	sinking	rates,	and	into	different	elements.	Some	
models	explicitly	simulate	bacteria	and	viruses,	rather	than	
just parameterising their effects.

Besides	NPZD	variables,	models	can	also	include	other	re-
lated	processes,	such	as	the	oxygen	and	carbon	cycles.	The	
carbon cycle is usually represented by the state variables DIC 
and	total	alkalinity,	the	latter	being	the	capacity	of	seawater	
to	neutralise	an	acid.	From	these	and	other	variables,	quanti-
ties	such	as	pH	and	air-sea	CO2	flux	can	be	calculated	(Zeebe	
and	Wolf-Gladrow,	2001).

BGC models are closely related to higher trophic level models 
or ecosystem models. The latter require the underlying bio-
geochemistry,	and	BGC	models	require	at	least	some	parame-
terisation	of	the	ecosystem,	i.e.	the	explicit	representation	of	
part	of	the	living	component	of	the	ocean	(e.g.	phytoplankton,	
zooplankton)	with	zooplankton	mortality	as	a	closure	term,	
parameterising the predation of zooplankton by higher tro-
phic	levels	such	as	fish	and	top	predators	(see	Section	9.2.8).
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Adding complexity to BGC models means that less important 
processes	are	neglected	or	amalgamated,	but	also	increases	
the uncertainties associated with approximated formulations. 
There	is	no	consensus	on	optimal	structure	and	complexity,	
which	will	vary	depending	on	the	purpose	(Fulton	et	al.,	2003).	
Adding	extra	variables	also	increases	computational	cost,	
split between the computation of transport (advection and 
diffusion)	for	each	state	variable	and	the	computation	of	the	
non-linear functions relating the state variables of the BGC 
model.	In	an	operational	context,	the	balance	between	mod-
el complexity and computational costs is critical and must be 
carefully evaluated. BGC models should be as simple as possi-
ble	and	as	complex	as	necessary	to	answer	specific	questions.

9.1.2.2. Model calibration

As	already	mentioned,	biogeochemical	models	are	based	
on empirical relationships to describe the dynamics of bio-
logical processes. Observational data are then essential for 
tuning,	adjusting	or	revising	the	formulations,	i.e.	making	the	
model	results	match	the	observed	distributions	and	fluxes	
of inorganic and organic quantities. Model calibration can be 
performed	"by	hand",	i.e.	by	adjusting	certain	parameters	of	
the biogeochemical models until the models show a "good" 
fit	to	the	observed	tracer	fields,	or	by	using	objective	optimi-

sation	methods	(Kriest	et	al.,	2020).	The	resulting	set	of	bio-
geochemical parameters is often closely linked to the ocean 
circulation,	mixing,	and	ventilation	derived	from	the	physical	
model	used,	with	its	specificities	and	defaults.	

9.1.2.3. Physical-Biogeochemical coupling

Ocean	physics	advects	and	diffuses	BGC	model	variables,	
thus redistributing inorganic and organic amounts. In ad-
dition,	some	BGC	processes	depend	on	physical	conditions	
such	as	temperature	or	salinity,	particularly	crucial	for	the	
carbon	cycle.	Thus,	there	is	a	very	strong	link	between	the	
physical	conditions	and	the	BGC,	which	makes	the	BGC	mod-
els closely dependent on the physical models. 

Vertical motions are particularly critical to bring nutrients from 
nutrient-rich deep waters into the uppermost layer that re-
ceives the sunlight needed for photosynthesis and marine life. 
Two critical layers together regulate phytoplankton production:

• The mixed layer is the upper layer of the ocean that 
interacts with the atmosphere. It is assumed to be mixed 
and homogeneous through convective/turbulent pro-
cesses,	generated	by	winds,	surface	heat	fluxes,	or	pro-
cesses	modifying	 salinity.	 The	 deeper	 it	 is,	 the	 deeper	
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Figure 9.4. 	 Schematic	representation	of	the	interplay	between	mixed	layer	depth	(yellow	line)	and	upper-ocean	
euphotic	zone	(light	blue	area)	on	the	initiation	of	phytoplankton	bloom	(modified	from	Dall'Olmo	et	al.,	2016).
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phytoplankton	 are	mixed,	 which	 will	 take	 them	 away	
from the light required for photosynthesis. Deep mixing 
also replenishes near-surface nutrient stocks.

• The euphotic zone is the layer from the surface down 
to the depth at which irradiance is 1% of the surface 
irradiance.	The	deeper	the	euphotic	depth,	the	deeper	
the layer in which photosynthesis and phytoplankton 
production can occur. It extends from a few metres in 
turbid estuaries to approximately two hundred metres 
in the open ocean. 

The mixed layer may develop within the euphotic layer (in 
stratified	situations),	or	over	a	greater	thickness	of	up	to	
several	hundred	metres	(in	well-mixed	situations).	The	inter-
play between these two critical layers controls the plankton 
exposure to sunlight and the coincident exposure to nutri-
ents,	thus	regulating	phytoplankton	production	(Figure	9.4).	
Exact mechanisms are still debated. Please refer to Ford et al. 
(2018)	for	more	details.

In	turn,	phytoplankton	abundance	may	feed	back	to	phys-
ics,	by	absorbing	radiation	in	the	surface	layers	and	there-
fore affecting heat penetration into the water column (Len-
gaigne	et	al.,	2007).

9.1.2.4. From open ocean to coastal ecosystems

Different considerations are generally needed for open ocean 
and	coastal	ecosystems.	In	the	open	ocean,	the	seasonal	cy-
cle	is	quite	well	defined	and	recurring	(Figure	9.5).	Seasonal	
increases in temperature and solar radiation drive the phyto-
plankton spring bloom. The peak persists for a few weeks to 
months until nutrient limitation and grazing cause the bloom 
to collapse. A secondary biomass peak can develop in late 
summer or autumn.

In	contrast,	coastal	ecosystems	can	be	very	complex,	sub-
ject	to	a	succession	of	blooms	having	different	origins,	thus	
requiring	additional	model	complexity.	Correct	specification	
of	river	inputs	also	becomes	more	critical.	Furthermore,	the	
equations	in	Section	9.1.2.1	are	for	the	pelagic	(water	column)	
ecosystem.	In	shallow	waters,	such	as	shelf	seas,	it	becomes	
important	to	include	the	benthic	(seafloor)	ecosystem	into	
the	BGC	models.	This	requires	the	addition	of	extra	variables,	
though	they	do	not	need	to	be	advected	or	diffused.	Finally,	
coastal	waters	are	often	turbid,	and	the	effect	of	sediments	
and coloured dissolved organic matter on light and there-
fore primary production should be included. Dedicated opti-
cal models are sometimes used for this purpose (Gregg and 
Rousseaux,	2016).

9.1.2.5. Potential predictability of ocean biogeochemistry

The potential predictability of ocean biogeochemistry varies 
considerably depending on the scales and quantities of inter-
est.	A	lot	of	variability	is	driven	by	physics,	with	changes	in	mix-
ing	and	stratification	affecting	light	and	nutrients	and	therefore	
primary production. When these physics changes can be pre-
dicted,	e.g.	changes	in	stratification	with	a	warming	climate	and	
interannual variability related to phenomena such as the El 
Niño	Southern	Oscillation,	associated	large-scale	changes	to	
ocean	biogeochemistry	can	also	be	predicted.	Similarly,	chang-
es	to	the	ocean	carbon	cycle	and	acidification	with	increasing	
atmospheric CO2 concentrations can be predicted. When con-
sidering	local	regions	and/or	shorter	time	scales,	both	physics	
and biogeochemistry become harder to be accurately predicted.

Furthermore,	various	biogeochemical	quantities	change	at	
very different rates. Phytoplankton react quickly to changes 
in light and nutrient availability and can double in concen-
tration	over	a	day	(Laws,	2013).	Zooplankton	will	exhibit	a	
slightly	more	lagged	response	to	these	changes.	Meanwhile,	
nutrient	concentrations	will	typically	change	more	slowly,	
and	the	carbon	cycle	even	more	slowly,	although	surface	
concentrations	(of	nutrients	and	carbon)	can	change	rapidly,	
for example during a storm. These different rates of change 
have implications for the scales of predictability.

For	accurate	predictions,	it	is	important	to	initialise	mod-
els	using	data	assimilation	(see	Section	9.2.5).	At	season-
al-to-decadal	time	scales,	predictability	is	dominated	by	
physics,	and	this	must	be	accurately	initialised	and	simulat-
ed.	Physics	remains	important	at	shorter	time	scales,	but	is	
essential	to	initialise	nutrient	concentrations	correctly,	as	this	
will help to determine the primary productivity. For short-
range	predictions,	phytoplankton	concentrations	should	be	
initialised,	though	the	memory	of	the	phytoplankton	variables	
may	be	as	short	as	a	few	days,	given	that	they	react	to	changes	
in nutrients and mixing. Accurate model formulations and pa-
rameterisations	are	also	required,	otherwise	the	model	will	
react incorrectly to the data assimilation.

Figure 9.5.  Seasonal cycle of phytoplankton 
relative	to	variations	in	sunlight,	nutrients,	and	
zooplankton (Copyright: 2004 Pearson Prentice 
Hall,	Inc).
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Green Ocean modelling for operational oceanography is built 
in the same way as its Blue equivalent. The operational suite 
follows	almost	the	same	architecture	(see	Figure	4.1)	and	in-
formation	flows	from	marine	observation	data	up	to	end-us-
er products enhancing the initial information. Each compo-
nent	includes	a	research	stage,	a	development	stage,	and	an	
operational stage. This Chapter mainly focuses on the last 
stage,	in	which	the	system	is	in	operation.

The	modelling	component	includes	the	BGC	model,	data	as-
similation,	and	ensemble	modelling,	executed	for	analysis	
and to forecast BGC conditions. The data include upstream 
data	such	as	physical	conditions,	atmospheric	forcing,	exter-
nal inputs of chemical compounds provided at interfaces 
(atmosphere,	 land,	and	seafloor),	observational	data	from	
satellites,	and	in-situ	measurements	integrated	into	the	sys-
tems via data assimilation methods. The data are also used 
for validation tasks: the near-real time evaluation of the 
forecast accuracy and the delay mode evaluation of the 
model	system.	Finally,	the	model	outputs	and	end-user	
products are prepared by respecting certain standards of 
format,	units,	names,	etc.	for	delivery	to	users	and	archiving.

9.2.1. Architecture singularities

In	this	section,	we	present	the	main	architecture	singulari-
ties of OOFS dedicated to the production of ocean biogeo-

chemistry and marine ecosystems information. As most sys-
tems describing the “Green Ocean” in operation today are 
less	advanced	than	their	“Blue	Ocean”	equivalent,	the	“ide-
al” design proposed here includes some features that are 
still	at	the	stage	of	research	or	development.	Yet,	they	should	
be kept in mind for the construction of future systems.

9.2.1.1. Physical, optical, and biogeochemical components

As	introduced	in	Section	9.1.2,	the	space-time	evolution	of	the	
BGC	quantities	is	driven	by	physical	fields	through	horizontal	
and	vertical	advection,	lateral	diffusion,	and	vertical	mixing.	Ver-
tical motions are particularly important as they supply nutrients 
to	the	lighted	upper	ocean,	allowing	photosynthesis	to	occur.	

The	limitation	of	photosynthesis	by	light	thus	requires	a	fine	rep-
resentation of the penetration of spectral irradiance in the upper 
ocean,	as	it	is	absorbed	and	scattered	within	the	water	column.	
Light penetration used to be managed by very simple optical 
schemes,	but	it	 is	now	increasingly	managed	by	advanced	
bio-optical modules embedded into the physical-biogeochemi-
cal	model	systems,	to	both	compute	photosynthetic	activity	and	
to make the link with key observations such as spectral irradi-
ances from ocean colour missions. The evolution of ecosystem 
variables	in	the	trophic	chain	is	driven	by	physics,	optics,	and	
biogeochemistry	through	primary	production,	which	under-
pins	the	whole	marine	ecosystem	(see	Section	9.2.8).

9.2.  
Biogeochemical forecast and multi-year systems

Figure 9.6. 		 Schematic	of	a	physical-biogeochemical	coupling	(left)	and	nesting	(right).
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Figure 9.7.   Chronology of oceanographic observation platforms to measure marine biogeochemistry (adapt-
ed	from	Chai	et	al.,	2020).

The	physical	fields	can	come	from	simulations	of	the	ocean	
dynamics	(reanalyses,	nowcasts	or	forecasts)	produced	in-
dependently	by	the	BGC	modelling	suite.	Nevertheless,	the	
physical	fields	must	reflect	the	essential	dynamical	proper-
ties	for	the	biogeochemistry,	such	as	the	right	mixing	rate,	
the	right	vertical	velocity	statistics,	and	the	right	phasing	
with mesoscale structures and frontal positions (Berline et 
al.,	2007).

Although	some	feedback	from	biology	to	physics	may	exist,	
such	as	self-shading	(Hernandez	et	al.,	2017)	or	phytoplank-
ton	heat	release,	their	effects	are	generally	limited	to	moder-
ate	modifications	of	the	upper-ocean	heat	budget	and	asso-
ciated	vertical	structure	of	the	thermocline.	Therefore,	the	
physical and BGC modelling components are usually linked 
by	“one-way”	coupling,	resulting	in	successive	model	opera-
tions	(Figure	9.6).	As	a	result	of	the	“one-way”	approximation,	
the	coupling	can	be	implemented	in	“online”	mode,	i.e.	the	
physical and biogeochemical models run simultaneously at 
each time step: the temporal update of the physical model is 
performed	first,	before	being	used	for	the	update	of	the	bio-
geochemical	component.	Alternatively,	the	coupling	can	be	

implemented	in	“offline”	mode	where	the	physics	is	comput-
ed beforehand and stored at lower frequency (e.g. each day/
week)	and	then	used	as	inputs	for	the	biological	model	(Ford	
et	al.,	2018).

Such systems are usually less expensive in terms of compu-
tational	resources.	However,	the	practicality	of	the	“offline”	
coupling approach can be questioned with respect to vertical 
viscosity	and	diffusivity	coefficients,	which	typically	vary	
with	short	time	scales	(~hours)	compared	to	the	storage	rate	
of	“offline”	physical	fields	(typically	a	few	days).	This	can	be	
an issue in an integrated perspective that includes data as-
similation. Burning questions underlying the coupling strat-
egy for assimilative systems are still the subject of long-last-
ing	research	efforts	by	the	community	(Fennel	et	al.,	2019).

Regional models with lateral open boundaries also require 
values of the model state variables at boundaries. A conve-
nient	way	is	nudging	to	fixed	or	climatological	data	from	glob-
al	 reanalysis	or	datasets,	but	a	more	 robust	approach	 is	 to	
nest high-resolution regional ocean models into larger-do-
main	(and	usually	lower-resolution)	models	(see	Figure	9.6).	
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As	for	the	coupling	between	physics	and	biogeochemistry,	the	
coupling	 between	 configurations	 nested	 in	 space	 can	 be	
“one-way”,	with	the	inner	model	having	no	influence	on	the	
outer	model,	or	“two-way”,	in	which	the	inner	model	provides	
information to the outer model. “One-way” coupling is mainly 
used	in	BGC	operational	systems	for	different	reasons,	as	it	
offers the possibility to run the BGC model either in “online” 
or	“offline”	mode	with	the	physics,	while	the	“two-way”	nest-
ing requires by nature an “online” coupling between the 
physics	and	the	BGC,	making	the	operation	of	such	coupled	
systems more complex and time-consuming.

For	a	sound	representation	of	the	biology,	a	specific	design	
of the vertical discretization in the upper ocean is needed. 
The strong vertical gradients of the physical and biological 
variables typically require vertical spacing between horizon-
tal	levels	~	1	metre.	Regarding	the	horizontal	grid,	it	is	not	
always required to use the same numerical grid for physics 
and for biology. A coarsening approach that preserves the 
essential features of the resolved dynamics has been imple-
mented in some systems to feed the biological equations at 
lower	resolution,	while	saving	numerical	resources	(Berthet	
et	al.,	2019;	Bricaud	et	al.,	2020).	

9.2.1.2. Propagation of uncertainties

The forward integration of the discretized equations involved 
in the different modelling steps leads to results that are fun-
damentally uncertain. It is necessary to quantify this uncer-
tainty,	both	to	provide	the	user	with	useful	information	for	
decision making and for merging the forecast with future 
observations,	which	are	also	intrinsically	uncertain.

The main possible sources of uncertainty in biogeochemical/
ecosystem models are the following:

• initial conditions of the state variables;
• external	data	involved	in	the	forcings,	such	as	down-
ward	radiation,	cloud	cover,	etc.;
• input physical data used to constrain the evolution 
equation	of	the	biogeochemical/	ecosystem	variables,	
such	as	currents,	temperature,	vertical	eddy	viscosity,	etc.
• parameters	involved	in	the	representation	of	optical,	
BGC and ecosystem processes;
• numerical schemes and numerical approximations 
(such	as	coarsening	or	offline	integration);
• unresolved,	sub-grid	scale	processes	that	may	induce	
bulk effects as a result of non-linearities.

These	uncertainties	can	be	quantified	heuristically	or	can	be	
explicitly considered by introducing stochastic parameter-
izations	in	the	model	equations,	as	proposed	by	Garnier	et	
al.	(2016).	Multiple	forward	integrations	can	then	be	pro-
duced to generate ensembles that provide an approximation 
of the spread of the plausible solutions. A sample of the pri-

or probability distribution of the forecast is then generated 
by	the	different	ensemble	members	(Santana-Falcon	et	al.,	
2020).	As	a	result,	the	forward	integration	module	(referred	
as	Step	2	“Forecast”	in	Figure	4.1)	should	be	designed	in	such	
a way that it can be called n times (with n = a few tens to 
hundreds)	in	parallel	or	in	sequence.	Please	refer	to	Section	
9.2.4 for more details on Ensemble modelling.

9.2.1.3. BGC Data singularities

Biogeochemical variables very often have non-Gaussian 
statistical properties. This can be explained by the nature 
of these variables (generally concentrations that repeated-
ly take values close to 0 or biomasses that can vary by sev-
eral	orders	of	magnitude),	which	is	related	to	the	non-lin-
earities of the processes involved. Non-Gaussian behaviour 
requires special attention at the time of validation when 
comparing	model	variables	to	observations,	using	metrics	
calculated on log-transformed data or non-parametric 
metrics	 (please	 refer	 to	 Section	 9.2.6	 for	 more	 details).	 

Figure 9.8.  Examples of Chla ocean colour 
global multi sensor products available on the Co-
pernicus Marine Service. They are daily products 
for	1st	May	2019:	a)	OC-CCI	product;	b)	Coperni-
cus-GlobColour	level	3	product;	and	c)	Coper-
nicus-GlobColour	“Cloud	Free”	(interpolated)	
product	(from	Garnesson	et	al.,	2021).
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In	 addition,	 the	 assimilation	methods	applicable	 to	 large	
systems,	e.g.	Ensemble	Kalman	Filters,	are	typically	adapted	
to	Gaussian	distributions:	as	a	result,	it	is	necessary	to	insert	
a so-called anamorphic transformation – a function match-
ing the quantiles of the variable distribution to those of a 
standard Gaussian – between the outputs of the ensemble 
forward integration and the observational update step. This 
can be done in different ways: by prescribing a priori a given 
transformation	(e.g.	log-normal	or	truncated	Gaussian),	or	
by constructing the transformation from the ensemble in-
formation as proposed by Simon and Bertino (2009 and 
2012)	 and	Brankart	 et	 al.	 (2012).	 At	 the	end	of	 the	analysis	
step,	 the	 inverse	 transformation	must	 be	 applied	 to	 com-
plete the assimilation cycle and prepare a new initialization.

Another issue comes from the highly heterogeneous distri-
bution	of	the	biogeochemical	data	in	space	and	time,	most	of	
which	coming	from	satellites	(ocean	colour)	and	fairly	dis-
persed BGC-Argo profilers. The spatial scales captured by 
these	observational	data	are	therefore	very	different,	requir-
ing special care within biogeochemical data assimilation sys-
tems for localization at the analysis stage. The transforma-
tion	in	the	Fourier	space	can	then	prove	beneficial	to	carry	
out	this	step,	as	proposed	by	Tissier	et	al.	(2019).	The	archi-
tecture of an operational chain dedicated to biogeochemis-

try should therefore include a step to perform the observa-
tional update in a transformed space.2

9.2.2. Input data: available sources  
and data handling

This Section provides a general description and technical in-
formation on the data used to both drive and validate a bio-
geochemical forecasting system. Observational data are re-
quired at different stages of an OOFS: 

• Data	is	first	used	to	set-up	the	model	configuration:	
initial	and	lateral	conditions,	physical	forcing,	atmo-
spheric	surface	forcing,	and	external	inputs.	
• Data is essential for calibrating the formulations of 
the	BGC	processes,	i.e.	making	the	model	results	to	
match	the	observed	distributions	and	fluxes.	
• Then data is used to evaluate the model product quality.
• Finally,	observational	information	is	incorporated	into	
the numerical models using data assimilation methods 
with the objective to improve predicted model states.

2. https://marine.copernicus.eu/access-data/ocean-mon-
itoring-indicators/north-atlantic-ocean-chlorophyll-time-
series-and-trend

Figure 9.9. 		 North	Atlantic	Ocean	time	series	and	trend	(1997-2019)	of	satellite	chlorophyll.	Blue	dots:	daily	
regional average time series; green line: deseasonalized time series; blue line: linear trend (source: Copernicus 
Marine Service at 🔗2).
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9.2.2.1. Physical conditions

Required	fields	are	currents,	temperature,	salinity,	vertical	
diffusivity	coefficient	(Kz),	and	MLD.	They	are	provided	by	a	
physical model to the BGC model with which it is coupled in 
either	“online”	or	“offline”	mode	(see	Section	9.2.1	for	de-
tails).	Advection	and	diffusion	routines	are	usually	shared	
with the physical model. A list of physical-BGC coupled sys-
tems is available in Section 9.2.9.

9.2.2.2. Observational data

Ocean-observing platforms to measure marine BGC encom-
pass	ship,	mooring,	and	remote	sensing	observations.	A	good	
overview	 of	 the	 evolution	 and	 diversification	 of	 platforms	
over	the	past	century	is	given	by	Chai	et	al.	(2020)	from	which	

is	taken	Figure	9.7.	Among	the	traditional	observing	systems,	
satellites	 represented	a	 revolution,	providing	a	 continuous	
spatiotemporal coverage of sea surface variables. More re-
cently,	 autonomous	mobile	 platforms	measure	 ocean	 vari-
ables through the water column. They cover a wide range of 
spatial	and	temporal	scales,	filling	the	observational	gaps.

9.2.2.2.1. Remote sensing observations

Remote sensing-derived Chla data have a good spatial cover-
age of the entire ocean in near-real time and reprocessed 
time series for global and regional mapped products. They 
are	available	through	operational	services,	such	as	the	Coper-
nicus Marine Service (🔗3;	Le	Traon	et	al.,	2017).	Figure	9.8	

3. https://marine.copernicus.eu/

Figure 9.10. Spatial	coverage	of	chlorophyll	(top	left),	oxygen	(top	right),	nitrate	(bottom	left)	and	phosphate	
(bottom	right),	shown	as	the	number	(N)	of	profiles	in	the	upper	100	m	water	depth	in	1°x1°	cells,	from	1990	
to	2020.	To	show	gaps	more	clearly,	colour	shading	is	from	dark	(low	sampling)	to	light	(high	sampling),	white	
colour	indicates	no	sampling	(from	Jaccard	et	al.,	2021).
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presents some Chla products and their spatial coverage. Fig-
ure 9.9 illustrates the long time series available. Remote 
sensing derived PFTs and optical properties are also starting 
to be distributed on the same portal.

9.2.2.2.2. In-situ observations

The Copernicus Marine Service collects and distributes in-situ 
observations	 from	 a	 variety	 of	 platforms,	 including	 manual	
CTD-O2	measurements,	BGC-Argo	profiling	floats,	 ferrybox	sys-
tems,	 gliders	 and	moored	 buoys,	 gathered	 by	 global	 systems	
such	as	the	EuroGOOS,	SeaDataNet,	NODCs,	and	the	JCOMM.	Two	
types	of	products	are	provided:	1)	NRT	products	automatically	
quality controlled within 24 hours from acquisition for forecast-
ing	activities	and	2)	the	reprocessed	(or	multi-year)	products	for	
reanalysis activities. The main biogeochemical variables avail-
able	are	dissolved	oxygen	concentration,	nutrients	(nitrate,	sili-

cate	 and	 phosphate),	 Chla,	 fluorescence,	 and	 pH.	 The	 spatial	
distribution	 of	 all	 chlorophyll,	 oxygen,	 nitrate	 and	 phosphate	
samples	 of	 the	 reprocessed	 product	 (from	 1990	 to	 2020)	 are	
shown in. Figure 9.10.

Special attention should be paid to autonomous robotic under-
water	vehicles.	Argo	profiling	floats	drift	freely	with	the	currents	
and	measure	ocean	variables	through	the	water	column,	reach-
ing	up	to	2000	m,	while	gliders	can	be	programmed	to	sample	
along	a	predetermined	path,	making	the	former	more	suited	to	
the open ocean and the latter more suitable for observation at 
various depths in coastal and shallow oceans. After cycling verti-
cally,	both	floats	and	gliders	transmit	their	data	to	orbiting	satel-
lites	once	they	have	reached	the	surface,	providing	continuous	
monitoring and real-time data to operational centres.

The	 International	Biogeochemical-Argo	 (BGC-Argo)	program	 is	
revolutionising marine biogeochemistry by establishing a glob-
al,	full-depth,	and	multidisciplinary	ocean	observation	network,	
acquiring	profiles	in	regions	of	the	global	ocean	that	previously	
were	observationally	sparse	(Russell	et	al.,	2014).	They	measure	
oxygen,	Chla,	nitrate,	pH,	suspended	particles,	and	downwelling	
irradiance.	Since	their	deployment	in	2012,	1623	floats	have	ac-
quired	about	250000	profiles	(Figure	9.11),	the	major	part	being	
oxygen.	The	aim	is	to	have	1000	active	profiling	floats	measuring	
simultaneously the six essential variables mentioned above 
(Biogeochemical-Argo	Planning	Group,	2016;	Chai	et	al.,	2020).	At	
the	time	being,	410	floats	are	operational	around	the	world	(Fig-
ure	9.12).	An	example	of	time	series	is	presented	in	Figure	9.13.	
BGC-Argo data are publically available in near real-time after an 
automated	 quality	 control,	 and	 in	 scientifically	 quality	 con-
trolled	form,	delayed	mode	data,	within	six	months	of	collec-
tion,	via	two	Global	Data	Assembly	Centers	(Coriolis	 in	France	
and	US-GODAE	in	USA)	(Argo,	2022;	🔗4).	They	are	also	available	
through the Copernicus Marine Service (🔗5).

4. https://www.seanoe.org/data/00311/42182/
5. https://marine.copernicus.eu/

Figure 9.11. Spatial	coverage	of	oxygen	(top),	
Chla	(middle),	and	nitrate	(bottom)	from	the	
start	of	the	BGC-Argo	program.	230,202	profiles	of	
oxygen,	94,947	profiles	of	Chla,	and	49,939	profiles	
of nitrate have been acquired by October 2021 
(source:	T.	Carval,	personal	communication	using	
data	from	the	Copernicus	Marine	Service).
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Figure 9.12. Location	of	operational	BGC-Argo	floats	in	August	2021	(🔗6).

6

6. www.ocean-ops.org

Figure 9.13. Time	evolution	of	Chla	(top	left),	oxygen	(top	right)	and	nitrate	(bottom)	along	a	BGC-Argo	float	
trajectory in the North-East Atlantic.
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9.2.2.3. Climatologies, databases, and atlases

Databases and atlases are collections of uniformly format-
ted,	quality	controlled,	and	publicly	available	ocean	surface	
or	vertical	profile	data.	Climatologies	are	mapped	data	prod-
ucts,	produced	from	databases	and	atlases,	representing	the	
mean	annual,	seasonal,	or	monthly	large-scale	characteris-
tics of the distribution of a quantity. They can be used to 
create initial and/or boundary conditions for ocean BGC 
models,	evaluate	numerical	simulations,	and	corroborate	
satellite data.

The	GLODAP	provides	a	climatology	(GLODAPv2.2020)	of	ocean	
biogeochemical	variables	of	oxygen,	phosphate,	nitrate,	sili-
cate,	dissolved	inorganic	carbon,	total	alkalinity,	and	pH	on	a	
uniform 1° longitude/latitude grid. The product is described in 
Olsen	et	al.	(2020)	and	is	publicly	available	at	🔗7.8

The latest version of the WOA delivered in 2018 provides an 
annual,	 seasonal,	 and	monthly	 climatology	 of	 oxygen	 and	
macronutrients	(phosphate,	silicate,	and	nitrate)	on	a	1°	lon-
gitude/latitude	grid	(Figure	9.14).	

7. https://www.glodap.info
8. https://www.ncei.noaa.gov/products/world-ocean-atlas

It	is	described	in	Garcia	et	al.	(2018ab)	and	is	publicly	avail-
able at 🔗8. It is based on the latest major release of the 
WOD	described	in	Boyer	et	al.	(2018).

The	SOCAT	provides	surface	ocean	fCO₂	(fugacity	of	carbon	
dioxide)	observations,	🔗9.	The	latest	SOCAT	(version	2020)	
has 28.2 million observations from 1957 to 2020 for the global 
oceans and coastal seas. 

The EMODnet portal provides access to temporal and spatial 
distribution	of	marine	chemistry	data	in	European	seas,	🔗10.

9.2.2.4. Atmospheric surface forcing

Atmospheric surface conditions drive biogeochemical quan-
tities	and	processes,	such	as	photosynthesis	and	air-sea	ex-
changes	of	gas	elements	(oxygen,	carbon).	Typical	surface	
data	inputs	include	wind,	solar	radiation,	and	the	evapora-
tion-precipitation	flux.	They	can	be	obtained	from	an	opera-
tional	weather	prediction	system,	via	the	Copernicus	Climate	
Change Service (🔗11).

9. https://www.socat.info/
10. https://emodnet.eu/en/chemistry
11. https://climate.copernicus.eu/

Figure 9.14. Nitrate,	phosphate,	and	silicate	concentrations	at	sea	surface	and	dissolved	oxygen	concentra-
tion	at	200	m	depth,	all	in	mmol	m-3	(from	WOA	climatology).
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9.2.2.5. External inputs

External inputs of carbon and nutrients are provided to ma-
rine biogeochemical systems from observations or models. 
Although	these	inputs	are	currently	simplified	in	current	sys-
tems	(from	climatologies),	the	optimal	solution	would	be	to	
connect ocean operational systems with atmospheric and 
land operational systems. The link between the Copernicus 
Marine Service and the Copernicus Atmosphere and Land 
Services	(respectively,	🔗12 and 🔗13)	is	currently	discussed.

9.2.2.6. Units

Special attention should be paid to the units of the BGC 
quantities because there is no standardisation among the 
different	scientific	communities.	Model	data	are	usually	ar-
chived	in	the	units	specified	by	the	SI	Units	but	instruments	
frequently	do	not	measure	data	in	SI	Units,	making	conver-
sion	necessary.	For	example,	dissolved	oxygen	concentration	
in the seawater can be found in many different units (e.g. mg 
l-1,	ml l-1,	μmol l-1,	μmol kg-1,	mmol m-3,	μM),	with	the	SI	
Units being mole per cubic metre (symbol mol m-3).

It is worth noting the equivalences:

μmol l-1 = mmol m-3 =  μM

1 l = 10-3 m3 ≈ 1.025 kg

and the conversions:

μg l-1 = μmol l-1 × MW

μl l-1 = μmol l-1 × MV

g l-1 ≈ g kg-1 × 1.025

To convert a quantity in sea water from mole concentration 
(in	mol)	to	mass	(in	grams),	multiply	by	Molar	weight	(MW	in	
g mol-1);	from	mole	concentration	(in	mol)	to	volume	fraction	
(in	litre),	multiply	by	Molar	volume	(MV	in	l	mol-1);	expressed	
per	unit	mass	(in	gram)	to	volume	(in	litre),	multiply	by	den-
sity (in kg l-1).	1.025	is	an	approximate	but	general	value	for	
the density of seawater.

9.2.3. Modelling component

9.2.3.1. Numerical and discretisation choices

Marine biogeochemical models describe the cycling of es-
sential	elements	(e.g.	C,	N,	O2,	P,	and	Si)	through	the	lower	
trophic	levels,	usually	from	bacteria	up	to	mesozooplankton.	

12. https://atmosphere.copernicus.eu/
13. https://land.copernicus.eu/

Their complexity (i.e. number of state variables and process-
es)	differs	depending	on	the	scientific	question	under	inter-
est,	the	information	available	for	their	parameterization	and	
implementation,	and	the	investigated	time	and	space	scales.	
BGC models consist of a set of evolution equations (e.g. dif-
ferential	equations)	expressing	the	mass	balance	of	each	
model	component	(e.g.	state	variable).	These	mass	balance	
equations include local sources and sinks associated with 
biogeochemical	processes	(e.g.	photosynthesis,	respiration,	
and	nitrification),	trophic	interactions	(e.g.	predation),	the	
transport by physical processes in the three directions of 
space	by	advection	(e.g.	transport	by	the	main	current),	and	
diffusion (i.e. unresolved processes that are parameterized 
on	the	model	of	the	Fick’s	law	of	diffusion).	As	for	physical	
models,	biogeochemical	models	cannot	be	solved	analytical-
ly and require a numerical model for their integration. A nu-
merical	grid	has	to	be	defined	and	the	size	of	the	grid	cells	
will	define	the	spatial	scales	that	can	be	solved	(it	is	usually	
assumed that the length scale of the solved processes equals 
twice	the	size	of	the	grid).	Given	that	the	vertical	scales	of	
variations are much smaller than the horizontal ones due to 
the	rapid	extinction	of	the	light	field,	the	size	of	the	vertical	
mesh is usually of the order of metres in the upper layer. The 
numerical scheme for time steps and time integration has to 
be carefully chosen in order to avoid generating negative 
concentrations. The choices may be identical to the physical 
model	to	which	it	is	coupled,	or	different.	Numerical	and	dis-
cretization techniques are described in Chapter 5 and bio-
geochemical singularities are discussed in Section 9.2.1.

Whether the processes can be resolved or not in models will 
depend on the grid resolution used to solve the numeric. Fig-
ure	9.15	shows	the	spatial	and	temporal	scale	of	specific	bio-
geochemical processes. 

Regional and global scale models are able to capture the me-
soscale signals with temporal scales of the order of a month 
and spatial scales of the order of 50-100 km. Coastal models 
have	to	solve	the	high	frequency	signal	at	daily	and	(sub)-me-
soscale,	but	at	this	stage	they	are	able	to	solve	the	dynamics	
of the system at weekly to monthly scales.

9.2.3.2. The different biogeochemical models

In	marine	biogeochemistry,	the	specificity	lies	mainly	in	the	
diversity	of	environments,	ecosystems,	and	processes.	The	
choice of a BGC model will thus depend on the study area 
and the topic of interest.

Models of marine biogeochemistry and of the lower trophic lev-
els in the marine food web are usually of the NPZD type (see 
Section	9.1.2	for	more	details),	which	resolve	community	struc-
ture	by	the	explicit	representation	of	a	few	plankton	groups,	in	
accordance with their function in the ecosystem. Another ap-
proach is to let the community structure emerge from a wide 
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Figure 9.15. Time and space overlapping scales of major ocean processes. Main processes modelled by biogeo-
chemical	models	are	outlined	in	red	(adapted	from	Dickey,	1991).

range	of	possibilities.	For	example,	the	DARWIN	model	(Follows	
et	al.,	2007)	includes	a	large	number	(tens	or	hundreds)	of	PFTs	
whose physiological characteristics are stochastically deter-
mined	(the	parameters	are	prescribed	randomly),	allowing	the	
fittest	to	emerge	in	the	resulting	ecosystem.

Some of the most used models in OOFS are summarised below:

• HadOCC	(Palmer	and	Totterdell,	2001).
• MEDUSA	(Yool	et	al.,	2013).
• PISCES	(Aumont	et	al.,	2015).	Its	development	is	led	by	
the Pisces Community gathering eight international re-
search institutes/laboratories. The model can be down-
loaded from the NEMO and CROCO modelling systems 
into which it is embedded (🔗14 and 🔗15).
• ERSEM	 (Baretta	 et	 al.,	 1995;	 Butenschön	 et	 al.,	
2016).	Its	development	is	led	by	the	Plymouth	Marine	
Laboratory and the code is available at 🔗16.
• BFM	(Vichi	et	al.,	2015).	Its	development	is	led	by	a	con-

14. http://www.nemo-ocean.eu
15. https://www.croco-ocean.org
16. https://www.pml.ac.uk/Modelling/Home

sortium	of	five	members	and	the	code	is	available	at	🔗17.
• NORWECOM	(Skogen,	1993;	Skogen	and	Søiland,	1998).	
NORWECOM is the result of the cooperation between 
several	Norwegian	institutions,	for	more	information	
see http://www.ii.uib.no/~morten/norwecom.html.
• ECOSMO	(Daewel	and	Schrum,	2013)	is	developed	by	
Hereon with contributions from the Nansen Centre and 
other	collaborators,	see	🔗18.
• ERGOM	(Neumann,	2000).	It	was	developed	at	IOW,	
Germany. 
• BAMHBI	(Grégoire	et	al.,	2008;	Grégoire	and	Soetaert,	
2010;	Capet	et	al.,	2016).
• SCOBI,	described	in	Eilola	et	al.	(2009)	and	Almroth-Rosell	
et	al.	(2015).

Usually,	these	models	are	the	result	of	the	collaboration	be-
tween different national and international research/academic 
institutes	 and	 laboratories,	 organised	 in	 formal	 or	 informal	
consortia.	They	are	shared	by	several	operators.	In	most	cases,	
the code is available under open-source licences.

17. https://bfm-community.github.io/www.bfm-community.eu/
18. https://www.hereon.de/institutes/coastal_systems_
analysis_modeling/matter_transport_ecosystem_dynamics/
models/index.php.en
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Models	have	been	developed	to	be	applied	to	regional,	
shelf-sea,	basin,	or	global	ocean	scale.	The	level	of	complex-
ity differs depending on the application (biogeochemical cy-
cling	or	ecological	application).	The	models	mainly	differ	in	
the	biogeochemical	cycles	of	major	elements,	the	number	of	
nutrients,	the	number	of	autotrophic	and	heterotrophic	PFTs,	
the	complexity	in	process	formulation,	as	well	as	in	the	con-
sideration of the benthic component. See refer to Gehlen et 
al.	(2015)	for	a	detailed	description	of	these	models.

The practical ability to switch between different physical and 
biogeochemical models is desirable to compare models and 
upgrade them smoothly. This ability is offered by the FABM  
(🔗19)	and	it	has	been	used	in	NEMO	and	HYCOM,	among	oth-
er ocean/lake models programmed in Fortran. 

9.2.3.3. Connections Ocean-Earth systems

Several kinds of models are used for a range of environ-
ments,	but	different	considerations	are	needed	for	open	
ocean,	regional,	and	coastal	ocean.	Moving	from	the	open	to	
the coastal ocean is often accompanied by an increase in the 
spatial resolution and complexity of the model.

Regional models of coastal ecosystems can be very complex. 
Their dynamics is essentially driven by the boundary conditions 
with the open sea and at the air-sediment-land interface. 

 

19. https://bolding-bruggeman.com/portfolio/fabm/

 
For	the	ocean,	atmosphere,	rivers,	and	sediments	are	signif-
icant	sources	of	carbon	and	bioactive	nutrients,	such	as	ni-
trogen,	phosphorus,	 iron,	and	silicate.	Model	performances	
can be hampered by the quality of these boundary condi-
tions. Coastline and topography are also important to trigger 
high-frequency physical processes. 

Connections	with	the	surrounding	systems	(Figure	9.16)	that	
need to be carefully considered include: 

• Connection with land. Rivers exchange freshwater as 
well as inorganic and organic material with the ocean. 
Coastal marine ecosystems have been subject to con-
siderable	modification	in	recent	decades.	The	consider-
able nutrient load in river discharges is due to human 
activities	on	the	land	(e.g.	agriculture,	deforestation,	
waste	discharge,	etc.).	Such	inputs	are	critical	for	coast-
al ecosystem studies.

• Connection with the atmosphere. Atmospheric trans-
port and deposition are a source of chemical com-
pounds	(e.g.	carbon	dioxide,	nitrogen,	oxygen,	iron,	
and	phosphorus)	to	the	ocean,	affecting	marine	bio-
geochemistry	(e.g.	source	of	nutrients,	influence	on	pH,	
etc.)	(Krishnamurthy	et	al.,	2010).	

Figure 9.16. Connections	with	interfaces	(modified	from	Warner	et	al.,	2010).
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• Connection	with	the	seafloor.	Exchanges	between	the	
sediments and the ocean can be represented in a very 
basic way: they consist of the deposition of non-living 
organic	material,	resuspension,	and	release	of	inorgan-
ic nutrients from the sediments. But for a more robust 
approach it should be used an additional module rep-
resenting	(semi-)	explicitly	the	diagenesis,	benthic	eco-
system,	as	well	as	bioturbation,	diffusion,	bio-irrigation	
effects into the upper sediments and sediment trans-
port.	A	coupling	with	the	waves	is	sometimes	realised,	
e.g. using climatology. 

• Connection with the open ocean. Open ocean and 
coastal ecosystems are intimately linked as they ex-
change	mass,	fluxes,	and	materials	with	each	other.	The	
best possible knowledge of open boundary conditions 
is essential for coastal modelling.

• The sea ice algae contribute between 4 and 26% of the 
primary production in the sea ice covered regions of the 
Arctic	Ocean	(Spindler,	1994;	Gradinger,	2009;	Dupont,	2012).

Connections listed above are not always optimally imple-
mented	in	current	OOFS.	Rivers,	atmosphere,	and	sediment	
exchanges	are	often	introduced	in	a	simplified	way	using	cli-
matologies or simplified exchanges. More refined interac-
tions,	including	additional	numerical	modules	or	interannual	
observational	data,	are	currently	developing,	and	connec-
tions with surrounding systems should be considered for the 
construction of future systems.

9.2.4. Ensemble modelling

A forecasting system is literally designed to give an expectation 
of	future	conditions,	having	some	knowledge	of	present	condi-
tions. The expectation is also a judiciously named statistic de-
fined	by	the	mean	of	all	possible	outcomes;	for	example,	the	
expected primary production at a given location next week 
(time t1) can be expressed as the mean of all possible values at 
the same time and location <x(t1)> = ∫x(t1)dx. If we make next 
week’s primary production a function of today’s primary pro-
duction x1=f(x0),	the	function	f() implicitly includes all the other 
variables than primary production at present time such as nu-
trients,	solar	activity,	currents,	etc.	We	obtain	a	new	expression	
for the expected forecast value (using the notation <.> for the 
expected	value)	<x(t1)> = ∫f(x(t0))dx. The function f() is unfortu-
nately not a linear function because it represents the Michae-
lis-Menten	equations	(see	Section	9.1.2.1),	which	after	time	inte-
gration become exponentials: if the concentration of plankton 
doubles	today,	you	may	expect	a	lot	more	than	twice	the	plank-
ton next week in a period of multiplicative growth. This means 
that one cannot swap the above integral and the f()	function,	
even if x1 = f(x0)	is	true,	<x1>=f(<x0>) is generally false and will 
ineluctably generate a biased expectation: too high or too low 
depending on the convexity of the f() function.

One general workaround for this problem is the use of an 
ensemble	of	simulations.	Assuming	that	only	a	finite	num-
ber of N	possible	outcomes	is	available,	<x(t1)> becomes 
an arithmetic average instead of an integral: <x(t1)> ≅ 1/N 
Σ(XN(T1)),	with	xn	being	a	member	of	the	ensemble:	of	the	N 
possible	outcomes,	which	are	assumed	independent	from	
each	other	and	identically	distributed)	If	samples	are	like	
this,	the	arithmetic	average	will	converge	to	the	integral	as	
N tends to infinity. 

But why should one consider different possible outcomes 
when there is only one reality? The point is to manage uncer-
tainties,	which	have	more	diverse	origins	in	biogeochemical	
modelling	than	in	physical	or	wave	models,	in	particular	the	
dependence on ocean physics is strong. Among the input data 
sources	listed	in	Section	9.2.2,	the	following	bear	uncertainties	
that have an impact on biogeochemical model results:

• The seasonal restratification is critical. A too shal-
low mixed layer will confine the organisms near the 
surface and expose them to stronger lights than they 
should and exaggerate the bloom dynamics. A too shal-
low mixed layer will warm up too much and make the 
growth	conditions	artificially	favourable.	A	late	shoaling	
of the mixed layer in spring would lead to a delayed 
bloom	in	the	simulation,	leading	to	strong	errors	in	sur-
face Chla when comparing with observations. 

• A good representation of winter mixing is also a de-
sirable	feature	of	the	physical	model,	as	it	brings	deep	
nutrients closer to the surface and makes them avail-
able for primary production.

• The	ocean	temperature	influences	the	growth	of	mi-
croorganisms,	so	the	simulated	temperature	should	
be accurate.

• The transport of nutrients from the rivers to the open 
ocean	by	ocean	currents,	or	of	any	biological	material	
from	one	oceanic	region	to	another,	requires	accurate	
current simulations. 

• The availability of light is fundamental for the ocean 
ecosystem. The amount of light reaching the surface of 
the ocean (i.e. how much light has been attenuated by the 
atmosphere,	the	clouds,	the	water,	or	sea	ice)	is	uncertain.	

• The initial conditions of the biogeochemical model 
are often based on very scarce climatologies of nutri-
ents,	some	erroneous	values	may	remain	in	the	model	
during very long simulations.

• Nutrient inputs from rivers and atmospheric deposi-
tion are highly uncertain as well.
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All	the	above	are	extrinsic	source	of	errors,	which	can	be	
accounted for by randomly perturbing various inputs of the 
biogeochemical model: perturbations of the downwelling 
shortwave radiations would account for uncertainties in light 
conditions,	an	ensemble	of	physical	model	outputs	would	
account as well for the errors in the physical variables if the 
model	is	coupled	offline.	In	the	case	of	“online”	coupling,	the	
mixed layer depths can also be changed by adding perturba-
tions to the surface winds and surface heat fluxes. There are 
various ways of generating random perturbations in 2 or 3 
dimensions: a spectral method has been used in Natvik and 
Evensen	(2003)	and	following	works,	but	one	could	alterna-
tively use an atmospheric ensemble prediction system or an 
empirical mode decomposition of atmospheric reanalysis 
data.	The	goal	is	to	generate	an	ensemble	of	simulations,	
whose members differ slightly from each other because of 
the random perturbations they have received as input. 

Intrinsic sources of errors have also been mentioned in Sec-
tion	9.2.1.	Among	them,	the	BGC	model	parameters	cannot	be	
known with much certainty and can also be randomised. To 
do	this,	one	needs	to	imagine	their	probability	distribution,	
including their minimum and maximum admitted values. The 
random parameters may be fixed global values or values 
varying	continuously	in	space	(Simon	et	al.,	2015)	or	discrete-
ly,	according	to	designated	provinces	(the	Longhurst	provinc-
es	in	Doron	et	al.,	2011).	Time-varying	parameters	also	make	
sense since they may reflect neglected processes like popu-
lation	shifts.	To	this	effect,	an	auto-regressive	process	is	rec-
ommended	in	Garnier	et	al.	(2016).	

Other	intrinsic	sources	of	errors	can	be	difficult	to	control,	for	
example the noise caused by numerical advection schemes of 
the	model	or	other	model	biases.	If	these	are	not	too	severe,	it	
is desirable to emulate these uncontrollable errors by exag-
gerating	the	amplitude	of	other	errors	that	can	be	controlled,	

Figure 9.17. Scatter	plots	illustrating	second-order	statistics	from	various	types	of	ensembles	of	size	100.	a)	
two	independent	random	Gaussian	vectors	x	and	y.	b)	their	exponentials.	c)	same	as	(a)	but	adding	one	outlier	
at	(10,10).	d)	mixture	of	independent	Gaussian	vectors,	with	an	offset	of	10.	The	correlations	between	the	two	
variables are indicated in the legend. 

CHAPTER 9. BIOGEOCHEMICAL MODELLING 268



e.g. increasing the level of noise in the wind forcing (extrinsic 
error)	to	compensate	for	a	bias	in	the	model	mixing	scheme	
(intrinsic).	The	preferred	action,	however,	should	be	to	correct	
the	biases	at	their	origin,	if	this	is	possible.

It	is	interesting	to	keep	track	of	the	perturbations	applied,	so	
that the differences between ensemble members can be ex-
plained by the sensitivity to the input parameters. A con-
trario,	Garnier	et	al.	(2016)	also	directly	perturb	the	concentra-
tions	of	biogeochemical	tracers,	in	which	case	the	differences	
between ensemble members can no longer be attributed to 
input parameters alone.

An ensemble of simulations is thus a way to obtain unbiased 
expectations,	defined	as	a	first-order	statistical	moment,	but	
it also provides other higher order statistics as well. One sta-
tistic that is critical for data assimilation is the variance-co-
variance	matrix,	a	second-order	statistic.	In	particular,	the	
statistics based on an ensemble can provide all empirical 
cross-covariances between observations and unobserved 
model	variables,	which	are	an	essential	ingredient	of	all	data	
assimilation	methods	(Carrassi	et	al.,	2018).

However,	the	variance	and	covariance	estimated	from	en-
sembles are sensitive to outliers and may be wrongly esti-
mated in case of ill-behaved ensembles. This is illustrated on 
Figure 9.17 with a synthetic example. Figure 9.17a shows the 
scatterplot	of	two	independent	Gaussian	variables,	x	and	y,	
that	display	a	low	correlation,	as	expected.	The	exponential	
of these values in Figure 9.17b shows a negative relationship 
due	to	the	exponential	stretching	of	randomly	high	values,	
which is not desirable neither for interpretation nor for as-
similation. Figure 9.17c illustrates that the correlation can be 
very sensitive to the introduction of a single outlier. Figure 
9.17d shows that a clustered ensemble can make the correla-
tion	artificially	high,	essentially	making	two	hundred	mem-
bers equivalent to a two-members ensemble only. 

9.2.5. Data assimilation systems

The assimilation of biogeochemical data into marine models 
aims at estimating the “true” value of biogeochemical quanti-
ties in real ocean ecosystems. These quantities are either key 
“states”	of	the	ocean	(e.g.	the	phytoplankton	biomass)	or	“pa-
rameters” characterising the functioning of the ecosystem (e.g. 
the	maximum	phytoplankton	growth	rate).	They	are	estimated	
by merging model guesses with field observations (e.g. model 
predictions and satellite observations of the phytoplankton 
biomass).	Such	merging	weights	the	errors	of	both	the	model	
and	the	observation,	looking	for	the	“true”	value	that	(ideally)	
lies in their proximity. Operational oceanography aims at esti-
mating these “true” biogeochemical quantities to evaluate 
trends of ocean biogeochemistry in the past (in ocean biogeo-
chemistry	reanalysis),	or	to	set	initial	values	for	biogeochemi-
cal model prediction in future forecasts.

The theory and methods behind data assimilation are described 
thoroughly in Chapter 4,	while	the	biogeochemical	model	com-
ponents have been described in the previous sections of this 
chapter. The following section provides a synthesis on how these 
ingredients can be combined in modern operational biogeo-
chemical systems. Comprehensive reviews of the subject were 
published	recently	by	Fennel	et	al.	(2019)	and	Ford	et	al.	(2018).

9.2.5.1. Biogeochemical state and parameter estimation

Most of the modern BGC OOFS apply DA to improve model sim-
ulations of biogeochemical state variables rather than biogeo-
chemical	parameters	(Fennel	et	al,	2019).	The	main	reason	for	
this bias is the straighter link between model state variables 
and	ecosystem	indicators	that	interest	end-users	in	the	policy,	
management,	and	blue	growth	sectors.	For	example,	the	MFCs	
of the Copernicus Marine Service provide assimilative reanal-
ysis	and	forecasts	of	nutrients,	phytoplankton	biomass	and	
oxygen concentrations (linked to coastal productivity and eu-
trophication),	and	water	acidity	(pH,	linked	to	ocean	acidifica-
tion	and	climate	change).	All	these	state	variables	are	linked	
to	the	Sustainable	Development	Goal	14	(Life	below	water)	
and are targets of marine policy (e.g. the European Union Ma-
rine	Strategy	Framework	Directive).

However,	the	variables	targeted	by	BGC	DA	systems	are	not	
necessarily	assimilated	into	the	model.	In	fact,	most	of	the	
above-mentioned centres assimilate ocean colour chlorophyll 
only,	as	a	proxy	of	phytoplankton	biomass,	and	none	of	them	
assimilates pH. It is assumed that a non-assimilated variable 
can be corrected towards its true value since it is linked to the 
assimilated	variable,	e.g.	pH	is	improved	through	its	relation	to	
the phytoplankton biomass via photosynthesis/respiration 
that	modify	dissolved	inorganic	carbon	(DIC)	concentration	
and	alkalinity	in	the	water	column,	and	thus	pCO2	and	pH.	
These corrections of non-assimilated variables can happen 
directly in the assimilative analysis step when using multivar-
iate	assimilation	methods	(Ciavatta	et	al.,	2011).	They	can	also	
happen indirectly during the model simulation of the ecosys-
tem	processes:	in	principle,	an	improved	estimation	of	the	
phytoplankton biomass should quantify better the air-sea CO2 
fluxes	and	hence	their	impact	on	pH.	However,	the	improve-
ment of non-assimilated variables is a strong assumption that 
needs to be thoroughly verified via comparison with indepen-
dent	datasets	(see	Section	9.2.6).

Some operational centres use BGC DA to estimate biogeo-
chemical	model	parameters,	on	their	own	or	concurrently	
with the model state variables (e.g. in a multivariate analysis 
configuration).	For	example,	the	Arctic	MFC	estimates	rates	of	
phytoplankton	growth	and	mortality,	and	this	improves	the	
simulation of the phytoplankton biomass that is a target 
variable	of	the	operational	system	(Simon	et	al.,	2015).	The	
parameters	can	be	estimated	as	variables	in	time	and	space,	
to somehow represent the variability of the real system 
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which cannot be formulated in the mechanistic equations of 
the	model.	For	example,	the	variability	of	the	phytoplankton	
species that are represented in biogeochemical models are 
often	forced	into	few	functional	groups.	In	practice,	the	spa-
tial-temporal variability of a given biogeochemical parame-
ter	is	often	represented	as	a	random	variable,	with	predefined	
statistical distribution. Its fluctuations are computed through 
the minimization of a cost-function between model predic-
tion	and	field	observations	of	a	state	variable,	which	is	linked	
to the parameter and assimilated into the model. BGC DA for 
parameter estimation has an enormous potential to improve 
our	understanding	of	marine	ecosystems,	their	model	repre-
sentation,	and	the	operational	prediction	of	target	variables.	
However,	it	is	also	challenging,	mainly	due	to	the	scarcity	of	
data to define realistic statistical distributions for the pa-
rameter variability and assess the reliability of the estimated 
parameter	fluctuations.	Schartau	et	al.	(2017)	provided	an	
excellent review of these opportunities and challenges.

9.2.5.2. Assimilated observational products

Most of the modern BGC OOFS assimilate ocean colour Chla 
into	their	model	systems	(Fennel	et	al.,	2019).	That	is	because	
this	satellite	product:	i)	quantifies	the	biomass	of	a	central	
component	of	biogeochemical	models	(phytoplankton);	ii)	
provides	data	that	are	generally	synoptic	(~100	km),	high	res-
olution	(~100	m),	and	frequent	(~daily);	and	iii)	has	a	timely	
and free access (e.g. through the Copernicus Marine Service; 
🔗20).	A	thorough	discussion	on	the	use	of	ocean	colour	in	
biogeochemical modelling and assimilation is provided in 
the	report	of	the	IOCCG	(IOCCG,	2020).	Here	it	is	worth	men-
tioning	that,	after	the	seminal	assimilation	of	ocean	colour	
by	Ishizaka	(1990),	biogeochemical	reanalyses	were	produced	
by assimilating ocean-colour total Chla in the global ocean 
(Nerger	and	Gregg,	2008),	in	an	ocean	basin	(Fontana	et	al.,	
2013),	and	in	coastal	and	shelf-seas	ecosystems	(Ciavatta	et	
al.,	2016).	More	recent	contributions	include	the	decadal	
global ocean ecosystem reanalyses by Ford and Barciela 
(2017),	obtained	by	assimilating	different	ocean	colour	prod-
ucts	for	1997	to	2012,	and	the	one	by	Gregg	and	Rousseaux	
(2019),	who	estimated	global	trends	of	primary	production	by	
assimilating ocean colour for 1998-2015. Besides the well-es-
tablished assimilation of total Chla from ocean-colour (e.g. 
Hu	et	al.,	2012),	innovative	applications	have	assimilated	sur-
face ocean colour products for: spectral diffuse attenuation 
coefficients	(Ciavatta	et	al.,	2014),	size-fractionated	Chla	and	
POC	(Xiao	and	Friedrichs,	2014),	remote	sensing	reflectance	
(Jones	et	al.,	2016)	and	both	phytoplankton	functional	type	
Chla	and	spectral	absorption	(Ciavatta	et	al.,	2018	and	2019;	
Skakala	et	al.,	2018	and	2020;	Pradhan	et	al.,	2020).	Surface	
data	of	partial	pressure	of	CO2	(pCO2)	from	ships	of	opportu-
nity were used in the reanalysis of air-sea CO2 fluxes in the 
global	ocean	(While	et	al.,	2012).	

20. https://marine.copernicus.eu/

Biogeochemical	data	are	sparse	for	the	ocean	interior,	but	
they can be useful to constrain vertical gradients that are 
extremely important in the functioning of marine ecosys-
tems.	For	example,	biogeochemical	simulations	were	 im-
proved	by	assimilating	vertical	observations	of	nutrients,	
oxygen,	and	pCO2	data	at	fixed	stations	(Allen	et	al.,	2003;	
Torres	et	al.,	2006;	Gharamti	et	al.,	2017).	The	increasing	num-
ber of autonomous underwater vehicles and floats observing 
biogeochemistry in the global ocean is an opportunity for the 
development of operational oceanography (see also Section 
9.2.2).	The	assimilation	of	such	data	in	the	water	column	can	
complement the assimilation of ocean colour at the surface of 
the	ocean.	For	example,	glider	data	of	Chla	and	POC	were	as-
similated	by	Kaufman	(2017),	while	Skakala	et	al.	(2021a)	assim-
ilated glider Chla and oxygen data along with ocean colour data 
in an operational model of the European North West Shelf 
Seas.	Recently,	the	assimilation	of	BGC-Argo	float	data	led	to	
improvements in the simulation of subsurface biogeochemis-
try	in	regional	seas	(Verdy	and	Mazloff,	2017;	Wang	et	al.,	2020),	
as	well	as	in	the	global	ocean	(Carroll	et	al.,	2020).	OSSE	analy-
ses have shown the potential of improving the ocean biogeo-
chemical simulations by combining the assimilation of the 
planned	1000	BGC-Argo	fleet	with	ocean	colour	assimilation,	
with	both	variational	data	assimilation	methods	(Ford,	2021)	
and	stochastic	ensemble	approaches	(Germineaud	et	al.,	2019).	
The Mediterranean MFC pioneered the assimilation of the 
BGC-Argo	float	for	operational	oceanography	(Cossarini	et	al.,	
2019).	This	application	is	demonstrating	remarkable	advantag-
es for the prediction of the subsurface phytoplankton dynam-
ics	and	biogeochemistry,	with	respect	to	the	assimilation	of	
ocean colour alone. It also pointed out the current main chal-
lenges	in	using	the	BGC-Argo	float	data	operationally:	i)	the	
availability	of	quality-controlled	data	in	near-real	time;	ii)	the	
relatively	low	number	of	floats	available	currently,	which	im-
plies that the impact of their assimilation is spatially con-
strained;	and	iii)	potential	biases	between	the	assimilated	float	
and satellite data (e.g. the Chla concentrations derived for re-
mote	sensitive	reflectance	and	in-situ	fluorescence).

9.2.5.3. Biogeochemical data assimilation methods

The general theory and application of data assimilation meth-
ods were presented in Chapter 5. For the assimilation of bio-
geochemical	data,	current	operational	systems	are	using	two	
methods	(Fennel	et	al.,	2019;	Moore	et	al.,	2019):

a. Ensemble	methods,	which	use	an	ensemble	of	ocean	
model simulations or states to represent the evolution 
of the physical and biogeochemical state variables and 
their uncertainty.

b. Variational	methods,	which	correct	the	model	simu-
lation towards the observation by minimising the dif-
ferences between the observation and the model esti-
mate of the variable.

CHAPTER 9. BIOGEOCHEMICAL MODELLING 270

https://marine.copernicus.eu/
https://marine.copernicus.eu/


Hybrid ensemble/variational assimilation methods have been 
applied	successfully	with	physical	ocean	models	(e.g.,	Storto	
et	al.,	2018)	and	are	currently	being	developed	for	the	assimi-
lation of biogeochemical data in operational systems of the 
Copernicus Marine Service (EU H2020 SEAMLESS project: 🔗21).	

There is no “best” method for the assimilation of biogeo-
chemical	data.	The	choice	depends	mainly	on:	i)	the	target	
variable	(or	parameter)	of	the	assimilative	simulation;	ii)	
the	data	being	assimilated;	and	iii)	the	computational	re-
sources,	which	can	become	a	major	issue	when	using	bio-
geochemical models with a large number of variables. For 
example,	an	ensemble	method	might	be	preferable	if	the	
target	variable	(e.g.	nitrate)	is	different	from	the	assimilat-
ed	variable	(e.g.	ocean	colour	Chla)	because	one	can	exploit	
multivariate analyses that take the dynamical model error 
covariances into account. If the number of CPUs is a con-
cern,	 efficient	 variational	methods	might	be	 the	best	
choice,	if	adequate	information	about	the	model	error	co-
variances is available.

As	far	as	ensemble	methods	are	concerned,	since	the	intro-
duction	of	the	original	EnKF	(Evensen,	1994),	different	flavours	
of	the	filter	have	been	developed	(Vetra-Carvalho	et	al.,	2018)	
and applied with operational biogeochemical systems (Fennel 
et	al.,	2019).	For	example,	both	the	reanalysis	system	of	the	
Arctic	Ocean	(Simon	et	al.,	2015)	and	the	operational	system	of	
the	Great	Barrier	Reef	(Jones	et	al.,	2016)	use	the	DEnKF	(Sakov	
and	Oke,	2008).	In	the	Baltic	MFC,	work	is	in	progress	to	apply	
the	local	ESTKF	(Nerger	et	al.,	2012),	while	the	Global	MFC	is	
based	on	the	SEEK	(Pham	et	al.,	1998).	However,	the	propaga-
tion of an ensemble of model states implies a high computa-
tional cost. To ensure that the EnKFs perform adequately with 
affordable	ensemble	sizes	(i.e.	between	10	and	200),	practical	
adaptations like “localization” have been adopted (Houteka-
mer	and	Mitchell,	1998).	Localization	approaches	correct	the	
model simulation towards the observation just around the 
point where the observation was taken. “How much around” 
(i.e.	the	localization	scale)	depends	also	on	the	spatial	vari-
ability of the variable that is observed.

Examples of variational methods for biogeochemistry used 
by some operational centres include: the 3D-Variational as-
similative system for the European North West Shelf Seas 
(Skakala	et	al.,	2018)	using	NEMOVar	(Mogensen	et	al.,	2009;	
Waters	et	al.,	2015)	and	for	the	Mediterranean	Sea	using	
3DVarBio	(Teruzzi	et	al.,	2014	and	2019);	the	4D-Variational	
system	of	the	CCS	(Song	et	al.,	2016).	In	all	the	above	cases,	
the	assimilated	variable	is	ocean	colour	Chla	concentrations,	
but a limited number of other model variables are also up-
dated by means of functional links such as background Ch-
la-to-nutrients ratios of the phytoplankton cells.

21. https://seamlessproject.org/

A particular issue for biogeochemical data assimilation meth-
ods is the non-Gaussianity of the distributions of the biogeo-
chemical	variables	(Campbell,	1995),	which	is	related	to	the	
non-linearity	of	the	ecosystem	processes.	In	fact,	most	of	the	
traditional methods assume that these distributions are 
Gaussian.	The	use	of	logarithm	of	the	concentrations,	in	par-
ticular	for	Chla	assimilation	(Nerger	and	Gregg,	2007)	and	
Gaussian	anamorphosis	(Bertino	et	al.,	2003),	has	been	
demonstrated to handle the issue by bringing distributions 
closer to Gaussian before the assimilation of the data. This 
approach is currently exploited in operational systems of the 
Copernicus	Marine	Service,	e.g.	in	the	centres	for	the	Europe-
an	North	West	Shelf	Seas,	Arctic	and	Global	oceans	(Simon	et	
al.,	2015;	Skakala	et	al.,	2018;	Lamouroux	et	al.,	in	prep.).

9.2.5.4. Current challenges and opportunities

State-of-the-art operational centres are using BGC DA to pro-
vide better model output products to their users. It is expect-
ed that this use will expand further in the future thanks to 
current research and developments that are addressing the 
BGC DA challenges and opportunities described below (see 
also	Fennel	et	al.,	2019,	and	the	EU	H2020	SEAMLESS	project	 
(🔗22)	specifically	dedicated	to	the	advancement	of	opera-
tional	biogeochemical	data	assimilation	systems).

Before	applying	any	BGC	DA	method,	the	physical-biogeochem-
ical	models	at	hands	need	to	be	improved	as	much	as	possible,	
e.g.	through	implementation	of	the	most	relevant	processes,	
improved	parameterizations,	corroboration	of	equations,	and	
simulation	by	using	laboratory	and	field	data.	In	fact,	biogeo-
chemical data assimilation cannot fix (and actually might dete-
riorate)	any	systematic	flaw	of	the	applied	ecosystem	models	
(Ciavatta	et	al.,	2011).

It is expected that the integrated assimilation of data from 
the expanding fleets of in-situ autonomous observing sys-
tems (e.g. BGC-Argo floats in the open ocean and gliders in 
shelf-seas	and	coastal	areas),	along	with	the	traditional	sur-
face	ocean	colour	data,	will	make	possible	to	constrain	better	
a larger number of model variables and parameters of opera-
tional	models	(Cossarini	et	al.,	2019;	Skakala	et	al.,	2021a).

In	current	applications,	the	assimilation	of	physical	data	into	
ecosystem models can cause the deterioration of the bio-
geochemical simulations due to the breaking of physical bal-
ances and of their consistency with the biogeochemical 
fields	(Anderson	et	al.,	2000).	In	models	of	the	equatorial	
ocean,	the	assimilation	of	temperature	and	salinity	profiles,	
or	sea	surface	height,	can	perturb	the	balance	between	pres-
sure	gradients	and	the	wind	stress,	generating	unobserved	
currents	and	spurious	vertical	velocities	(Waters	et	al.,	2017;	
Park	et	al.,	2018).	In	turn,	this	can	result	in	unrealistic	upwell-

22. www.seamlessproject.org
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ing of nutrients and excessive recreation of the water col-
umn,	deteriorating	biogeochemical	model	products	(e.g.	ox-
ygen	and	primary	production).	The	combined	assimilation	of	
physical and biogeochemical data is a promising approach to 
address	the	above	issue,	and	preserve	the	consistency	be-
tween the physical and biogeochemical simulations (Ander-
son	et	al.,	2000;	Ourmières	et	al.,	2009;	Song	et	al.,	2016;	Yu	et	
al.,	2018).	Using	bio-optical	modules,	which	provide	feedback	
from biology to ocean physics in “two-way” coupling interac-
tions,	models	are	expected	to	preserve	even	better	such	con-
sistency,	in	both	simulation	and	assimilation	steps	of	opera-
tional	systems	(Skakala	et	al.,	2021b).	The	opportunity	for	the	
combined assimilation of physical and biogeochemical data 
is increasing along with the growing number of BGC-Argo floats 
and gliders mounting multivariate sensors in the ocean (Ska-
kala	et	al.,	2020).

The steady expansion of computing capability will facilitate 
the use of ensemble methods (including hybrid ensem-
ble-variational	methods)	to	better	represent	the	dynamics	of	
the	biogeochemical	model	errors.	Nevertheless,	this	evolu-
tion should be accompanied by the use of new stochastic 
ensemble generation methods that can represent the actual 
model	uncertainty	(Santana-Falcon	et	al.,	2020),	and	the	
careful consideration of potential non-linearity/non-Gaussi-
anity issues that can weaken the applicability of traditional 
data	assimilation	methods.	To	address	these	issues,	new	DA	
methods	such	as	particle	filters	(van	Leeuwen,	2010)	have	
been applied to coupled physical-biogeochemical models 
(Mattern	et	al.,	2013)	and	might	be	used	in	operational	sys-
tems in the future.

Finally,	Artificial	Intelligence/Machine	Learning	methods	
have supported data assimilation with geophysical models 
and will likely become relevant components of future oper-
ational biogeochemical data assimilation systems (Mattern 
et	al.,	2012).

9.2.6. Validation strategies 

The validation methodology is built upon four classes of met-
rics that have been defined by the GODAE/OceanPredict com-
munity	(Figure	4.30)	to	monitor	the	quality	of	ocean	analyses	
and	forecasts	in	physics	(Section	5.7)	and	are	used	and	sup-
ported by the broader biogeochemical community. These met-
rics gather a complete range of statistics and comparisons in 
space	and	time	to	properly	assess	the	consistency,	represen-
tativeness,	accuracy,	performance,	and	robustness	of	ocean	
model outputs. They are classified as follows (for a more de-
tailed	description	see	Hernandez	et	al.,	2009	and	Chapter 4):

• Class 1:	metrics	aim	to	provide	a	general	overview,	
they are typically spatial maps or vertical profiles.
• Class 2: metrics correspond to virtual moorings or 
sections of the model domain.

• Class 3:	metrics	are	derived	quantities,	such	as	in-
tegrated quantities.
• Class 4: metrics are model-observation match-ups 
products.

Based	on	this	methodology,	the	validation	strategy	of	bio-
geochemical	operational	systems	consists	of	two	phases:	i)	
the	near-real	time	evaluation	of	the	forecast	accuracy;	and	ii)	
the delay mode evaluation of the model system. 

9.2.6.1. Near-real time evaluation

The NRT validation aims to provide information about the qual-
ity of the forecasts and relies on the availability of NRT observa-
tions (e.g. data from satellite and from autonomous underwater 
sensors	such	as	BGC-Argo	floats,	BGC-gliders,	and	moorings	
equipped	with	biogeochemical	sensors).	A	validation	is	defined	
as	semi-independent	(independent)	when	the	observations	are	
(not)	assimilated	in	a	sequence	of	analysis	and	forecast	cycles.	
In	fact,	an	observation	from	a	continuously	recording	sensor,	
even	if	not	yet	assimilated,	shares	some	level	of	correlation	with	
already assimilated observations from the same sensor.

The forecast validation is commonly based on temporal and 
spatial match-ups of forecast model outputs and observa-
tions	(i.e.	GODAE	Class	4	metrics),	and	on	the	computation	of	
statistical skill metrics such as average difference (also re-
ferred	to	as	average	misfit	or	bias),	average	absolute	differ-
ence,	RMS	Difference	(RMSD),	correlation	index,	and	model	
efficiency	(Stow	et	al.,	2009).	Skillfulness	of	forecasts	can	be	
compared in terms of persistence (i.e. comparison with pre-
vious	day	forecast)	or	with	skill	performance	against	a	refer-
ence climatology. Skill statistics are often reported for vari-
ous	forecast	lengths	(i.e.	number	of	days	in	the	future).	

Two examples are presented in the following figures. Figure 
9.18	shows	model	analysis,	six	days	of	forecast	and	compare	
surface Chla model estimates to satellite observations for 
the European North West Shelf Seas system. Successive daily 
forecast values quickly diverge from the satellite product 
during	spring	and	summer	months,	highlighting	the	strong	
effect of data assimilation during the production period. 
During	winter,	the	satellite	coverage	decreases	and	the	ocean	
colour	error	increases,	inducing	a	negative	forecast	bias.

Figure 9.19 shows statistics for 1st and 6th forecast day in the 
Arctic Ocean. The onset of the spring bloom in the model is 
significantly	delayed,	but	from	the	middle	of	May	onwards,	
the model results are close to the observations. The quality 
barely changes as the length of the forecast period increas-
es,	except	during	the	spring	bloom	(the	first	weeks	of	the	
time	series)	in	which	the	bias	is	significantly	smaller	for	a	
forecast	range	of	one	day,	suggesting	that,	at	this	stage,	the	
model is unable to support increased concentrations after 
the assimilation events.
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Figure 9.18. Time series of surface Chla concentration for European North West Shelf Seas average. Day 0 
is	the	analysis	day,	with	assimilation	of	satellite	Chla,	and	days	1-6	are	forecast	days.	Satellite	ocean	colour	
values are shown in red for comparison and error in the pink shaded area. The number of grid point matchups 
is	shown	in	orange	(from	McEwan	et	al.,	2021).

Figure 9.19. Time series for bias and root mean 
square	(RMS)	differences	between	the	Arctic	
Ocean model system and ocean colour satel-
lite	for	1st	(top)	and	6th	(bottom)	forecast	day.	
Statistics	are	given	for	the	various	regions,	log10	
transformation has been applied (from Melsom 
and	Yumruktepe,	2021).

A different class of metrics can be used to evaluate the ca-
pacity	of	the	forecast	system	to	reproduce	specific	events,	
such	as	algal	blooms.	In	this	case,	the	skill	metrics	are	based	
on a binary discriminator test with a threshold (i.e. greater or 
lower	than	a	given	value	of	Chla	concentration)	and	a	yes/no	
decision.	For	example,	the	ROC	(Brown	and	Davis,	2006)	com-
pares two independent information sets (i.e. forecast and 
observation)	with	respect	to	a	threshold	value.	For	each	cou-
ple	of	yes/no	decisions	there	are	four	possible	outcomes,	
either	correctly	positive	or	correctly	negative,	and	two	model	
failures for incorrectly positive and incorrectly negative. Re-
sults of such metrics are plotted in contingent tables (Stow 
et	al.,	2009).

An example of the use of the ROC to characterise Chla in 
terms	of	events	is	presented	in	Figure	9.20,	using	the	Medi-
terranean	Sea	system.	The	threshold	is	defined	as	the	75th	
percentile of surface concentration and identifies surface 
bloom occurrence.

Since biogeochemical variables are often not Gaussian dis-
tributed (e.g. surface Chla distribution resembles a log-nor-
mal	density	distribution),	forecast	skill	performance	metrics	
can be computed on log-transformed data or using non-para-
metric	statistics,	for	example	median	of	the	misfit	(i.e.	model	
minus	observation)	instead	of	bias,	interquartile	range	of	the	
misfits	instead	of	RMSD,	and	Spearman	correlation	instead	
of	Pearson	one.	However,	while	data	transformation	(such	as	
the	log-transformation)	preserves	the	statistical	robustness	
of	metrics,	it	results	in	metric	values	that	may	be	difficult	to	
understand	by	users,	thus	reducing	the	benefit	of	the	valida-
tion	information	(Hernandez	et	al.,	2009).

CHAPTER 9. BIOGEOCHEMICAL MODELLING 273



Figure 9.20. Time series of surface Chla concentration for European North West Shelf Seas average. Day 0 
is	the	analysis	day,	with	assimilation	of	satellite	Chla,	and	days	1-6	are	forecast	days.	Satellite	ocean	colour	
values are shown in red for comparison and error in the pink shaded area. The number of grid point matchups 
is	shown	in	orange	(from	McEwan	et	al.,	2021).

Real time skill statistics are reported in web pages which are 
continuously updated (e.g. the validation dashboard of the Co-
pernicus Marine Service: 🔗23).	Indeed,	time	series	of	the	vali-
dation metrics monitor the quality of the operational biogeo-
chemical system and alert for quality degradation of the 
model outputs. Possible deviation from the nominal quality of 
the	forecast	products,	which	is	specified	in	the	delay	mode	
validation,	might	be	due	to	model	failure	to	capture	specific	
events,	degradation	of	upstream	input	data	(e.g.	assimilated	
observations),	model	internal	biases,	but	also	to	the	day-to-
day	fluctuation	in	the	number	of	available	observations.

9.2.6.2. Delay mode evaluation

The DM validation conveys a more comprehensive and de-
tailed evaluation of the model capability to reproduce the 
spatial and temporal scales of variability of marine biogeo-
chemistry. DM validation assesses the reliability of the mod-
el	results	considering	the	user	needs	and	requirements,	
measures the strengths and weaknesses of the model sys-
tem	for	future	developments,	and	defines	the	nominal	qual-
ity level to which the forecast skill performance can be com-
pared	(Hernandez	et	al.,	2018).	

9.2.6.2.1. Common graphical representations

Results of the model performances assessment are generally 
provided in a variety of graphical representations that can be 
complementary	each	other,	most	common	representations	are:

23. https://pqd.mercator-ocean.fr/

• Spatial maps represent the spatial distribution of a 
given	variable	and	highlight	the	model's	ability	to	re-
produce	global	patterns,	spatial	gradients,	and	basin	
inter-difference. The bias and RMSD maps between pre-
dicted and observed values identify the regions of high 
and low model uncertainty. 

• Scatter plots compare the predicted values with the 
observed values in the form of a collection of pair-val-
ues	(i.e.	points	in	a	model	vs	observation	graph).	If	the	
points	are	coloured,	one	additional	information	can	be	
displayed. Scatterplots are useful to identify relation-
ships between the predicted and observed values. 

• Vertical	profiles	compare	the	vertical	structure	of	the	
predicted values with the observed values: surface val-
ues,	vertical	gradient,	and	deep	content.	The	shape	of	
the	profiles	gives	indications	of	the	physical	and	bio-
geochemical dynamics at work.

• Time series graphs represent the evolution of predict-
ed values with the observed values as a function of time. 
Such representation allows analysis if temporal dynam-
ics	(such	as	seasonal	variability,	interannual	variability	or	
trends)	are	captured	by	the	model.	

• Hovmöller	diagrams	are	latitude/longitude/depth	ver-
sus time diagrams displaying the evolution of a variable. 
They are more powerful than the time series graphs be-
cause	they	offer	an	additional	dimension,	allowing	to	
study how models reproduce spatial or vertical dynamics 
over time.
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• Taylor diagrams display simultaneously information 
on	model-observations	skill	for	three	metrics	(Taylor,	
2001):	1)	the	Pearson	correlation	coefficient,	2)	the	RMSD,	
and	3)	the	SD.	RMSD	and	SD	are	usually	normalised	
(RMSD and the model SD are divided by the SD of the 
observations)	to	represent	all	metrics	with	different	
units	into	a	single	diagram	(normalised	Taylor	diagram).	
The	Pearson	correlation	coefficient	between	the	model	
and the observations is given by the azimuthal position. 
The normalised SD is proportional to the radial distance 
from the origin. The normalised RMSD is proportional to 
the distance from the reference point. The observational 
reference is indicated along the x-axis and corresponds 
to the normalised SD and correlation equal to 1. Such di-
agrams are used to compare different model versions or 
to summarise the model performance for different vari-
ables	in	a	single	and	compact	diagram	(Jolliff	et	al.,	2009).

9.2.6.2.2. Evaluation of different system versions

In	the	frame	of	the	continuous	improvement	principle,	any	
upgraded and novel version of an operational biogeochemi-
cal system should show advancements with respect to the 
previous one in terms of model characteristics (e.g. addition 

of	new	modelled	variables	and	processes)	and	quality	of	the	
results. Updates of model formulations and upstream input 
data contribute to reduce the system uncertainty with re-
spect to a standard skill performance framework allowing 
versioning comparison. Figures 9.21 and 9.22 show how met-
rics can be used to compare different versions of a system.

Figure 9.21 compares daily surface Chla for two model versions 
of the European North West Shelf Seas system using regional-
ly-averaged	time	series	(GODAE	Class	4	metrics).	The	new	
product	(V11	in	Figure	9.21)	is	constrained	by	data	assimilation	
while	the	previous	product	(V10	in	Figure	9.21)	was	not.	The	
new version shows a better match with satellites during the 
growing	season,	with	lower	summer	peak	and	earlier	spring	
bloom,	although	there	are	differences	among	regions.	

In	Figure	9.22,	the	Taylor	diagram	summarises	the	quality	im-
provement for different system versions of the Irish-Bis-
cay-Iberia	MFC.	Chla,	nutrients,	oxygen,	and	carbon	variables	
are	compared	to	ocean	colour,	WOA	and	GLODAP	(GODAE	Class	
4	metrics).	The	evolution	of	the	system	shows	an	improve-
ment	in	almost	all	variables,	and	particularly	in	carbon-relat-
ed variables. This improvement is due to more realistic initial 
and boundary conditions in the latest version of the system.

Figure 9.21. Time	series	of	daily	surface	Chla	for	regions	of	the	European	North	West	Shelf	Seas,	from	the	
new	product	(V11),	the	previous	version	(V10),	and	ocean	colour	satellite	(from	McEwan	et	al.,	2021).
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Figure 9.22. Taylor diagram summarising the quality improvement of the operational system of the Irish-Bis-
cay-Iberia	MFC	(part	of	the	Copernicus	Marine	Service).	

9.2.6.2.3. Spatial and temporal evaluation

The DM validation is commonly built to test the pre-opera-
tional system for a medium/long simulation using higher 
quality observation datasets. They can include the same ob-
servation data of the NRT validation but characterised by a 
higher	quality	check	(e.g.	reprocessed	ocean	colour	product)	
and an additional number of historical in-situ data collec-
tions	(e.g,	World	Ocean	Database,	SOCAT,	EMODnet	data	col-
lection)	that,	because	of	the	delay	mode	quality	check,	be-
come available a certain time after their acquisition time.

Chla derived from remote sensing is a major dataset for BGC 
OOFS. It is extensively used in DM validation to validate the 
spatial and temporal structures. Figure 9.23 shows the annu-
al average distribution of Chla from the model and satellite 
observations	(i.e.	GODAE	Class	1	metrics).	The	large-scale	
structures	present	a	good	agreement,	i.e.	the	main	biogeo-
graphic	provinces	of	Longhurst	(1998)	including	oligotrophic	
gyres	(low	levels	of	chlorophyll		in	the	centre	of	the	basins),	
Antarctic	Circumpolar	Current,	tropical	band,	Eastern	Bound-

ary	Upwellings,	are	well	reproduced.	Differences	at	the	re-
gional	spatial	scale	are	found	along	the	equatorial	band,	in	
the	southern	high	latitudes,	and	in	coastal	regions	as	high-
lighted	by	the	scatterplot	(Figure	9.24).	The	distribution	of	
points shows good estimations in the open sea (for depths 
higher	than	1000	m)	and	underestimations	in	shallow	waters	
(when	bathymetry	is	lower	than	1000	m).

Seasonal cycle and interannual variability can be analysed 
using	Hovmöller	diagrams.	Figure	9.25	shows	the	seasonal	
cycle	of	Chla	in	the	North	Atlantic,	from	the	Global	Ocean	
system of the Copernicus Marine Service. The main features 
reproduced	are:	i)	a	bloom	in	spring	when	the	mixed	layer,	
rich	in	nutrients,	shoals	(light	limitation);	ii)	a	decrease	of	
Chla concentration in summer due to a thin mixed layer very 
poor	in	nutrients	(nutrient	limitation);	iii)	a	secondary	bloom	
in autumn when the mixed layer is deepening and nutrients 
are	transported	in	the	euphotic	layer;	iv)	a	period	of	weak	
production	(light	limitation)	in	winter;	and	v)	a	marked	sea-
sonal cycle in the extension of the subtropical gyre (retraction 
in	winter	and	extension	in	summer).	The	interannual	variabili-
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Figure 9.23. Annual mean of surface Chla averaged over the period 2009-2018 (mg Chl m-3).	Top	left:	model.	
Top right: satellite L4 observations. Bottom left: RMSD between model and satellite observations. Bottom right: 
log	bias	(i.e.	mean	difference	of	log)	between	model	and	observations	(from	Lamouroux	et	al.,	2019).

Figure 9.24. Scatterplot comparison of 2018 
annual averaged surface Chla concentration for 
the model vs satellite observations. The colorbar 
represents	the	bathymetry	(m),	from	shallow	
(yellow)	to	deep	water	columns	(dark	blue).	The	
dashed	line	is	the	line	1:1,	the	plain	line	is	the	
least	square	regression	fit	within	the	data.	The	
correlation	coefficient	R,	the	bias,	the	RMSD	(re-
ferred	to	as	rmse)	and	the	number	of	points	N	are	
computed on the log10-transformed space (from 
Lamouroux	et	al.,	2019).

ty of the south boundary of the oligotrophic gyre (i.e. the area 
between	30°N	to	40°N)	is	also	well	reproduced	by	the	model.

Long-term oceanographic monitoring stations are invaluable 
platforms to investigate temporal and spatial scales of BGC 
variability and assess BGC and ecosystem models. An exam-
ple	is	the	BATS	in	the	Sargasso	Sea,	situated	in	the	North	At-
lantic subtropical gyre. Figure 9.26 compares the Chla mod-
elled and measured at this station. The model predicts 
reasonably	well	the	subsurface	Chla	maximum,	with	concen-
trations slightly higher than in BATS data. The model catches 
the	seasonal	cycle,	with	a	bloom	during	the	deepening	of	the	
mixed	layer	in	winter.	In	summer,	the	production	in	the	mixed	
layer is more limited and is mainly due to the local reminer-
alization	of	organic	matter	(regenerated	production).

Observations for a large number of variables are also avail-
able in historical in-situ collections (e.g. nutrients like ni-
trate,	phosphate,	ammonium,	silicate,	iron;	and	carbonate	
system	variables	like	dissolved	inorganic	carbon,	alkalinity,	
pH,	pCO2,	biomass	for	phytoplankton	and	optical	quantities)	
contributing to enrich the state validation framework em-
bracing multiple features of the biogeochemical model. 

Figure 9.27 presents a multivariate GODAE Class 1 quantitative 
comparison	between	model	average	vertical	profiles	and	the	
reference	EMODnet	climatological	profiles	in	the	North	West	
Mediterranean sub-basin. The model reproduces the average 
values	and	shape	of	the	profiles;	modelled	profiles	are	within	
the	range	of	variability	of	the	climatological	profiles.
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Figure 9.25. Hovmöller	diagram	(latitude	versus	time)	of	surface	Chla	concentration	on	2009-2018	period	
computed	with	monthly	mean	fields.	Top:	model.	Bottom:	satellite	observations	(from	Lamouroux	et	al.,	2019).

Figure 9.26. Hovmöller	diagram	(depth	versus	time)	of	Chla	concentration	(mg	Chl	.m-3)	in	the	layer	0-300	
m	at	BATS	station,	over	the	period	2008-2017.	Top:	model.	Bottom:	bottle	data	at	BATS	station	(from	Lamou-
roux	et	al.,	2019).
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Figure 9.27. Comparison	between	weekly	(grey	lines)	and	annual	(black	lines)	vertical	profiles	from	the	model	
run	for	North	West	Mediterranean	sub-basin	in	2019	(part	of	the	Copernicus	Marine	Service)	and	climatological	
profiles	of	nutrients,	dissolved	oxygen,	and	carbon	variables	retrieved	or	derived	from	EmodNET	dataset	(red	
dots	for	means	and	dashed	lines	for	standard	deviations)	(from	Salon	et	al.,	2019;	Feudale	et	al.,	2021).

9.2.6.2.4. Process-oriented evaluation

Besides the already mentioned direct skill error calculation 
(e.g.	bias,	RMSD)	and	pattern	assessments	(e.g.	spatial	cor-
relation	between	model	and	observational	maps),	DM	vali-
dation is enriched by process-oriented metrics (i.e. quanti-
ties derived from state variables that describe the results of 
particular	processes)	and	theoretical	derived	quantities,	
such	as	stoichiometric	indicators	N:P,	DOC:POC,	Chla:POC,	
which	contribute	to	assess	the	fit-for-purpose	of	the	model	
functioning.	Among	process-oriented	metrics,	it	is	worth	
mentioning those deriving from the use of the continuously 
growing	amount	of	available	BGC-Argo	floats	and	glider	pro-
files.	Metrics	are	based	on	the	depth,	slope,	and	amplitude	of	
several	particular	biogeochemical	features,	such	as	the	deep	
Chla	maximum,	nitracline,	and	oxygen	minimum	zones.	They	
are	associated	with	the	biological	carbon	pump,	the	air-sea	
CO2	flux,	oceanic	pH,	oxygen	levels,	and	provide	an	innova-
tive framework that evaluates the model capability to repro-
duce	the	interaction	of	physical	(e.g.	vertical	mixing)	and	

biogeochemical	(e.g.	phytoplankton	growth	and	uptake)	pro-
cesses	that	shape	variable	vertical	profiles	(Salon	et	al.,	2019;	
Mignot	et	al.,	2021).	

These metrics are currently used for DM validation but could 
also be easily implemented for NRT validation by routinely 
comparing	the	forecast	skill	with	pre-operationally	defined	
seasonal benchmarks and thus highlighting possible anoma-
lies.	For	example,	Salon	et	al.	(2019)	used	such	metrics	to	
evaluate	the	system	of	the	Mediterranean	Sea	(Figure	9.28),	
while	Mignot	et	al.	(2021)	applied	them	to	evaluate	the	sys-
tem	of	the	Global	Ocean	(Figure	9.29	and	9.30),	both	part	of	
the Copernicus Marine Service. 

Figure 9.28 shows how the time evolution of the vertical pro-
files matches up with the observations as well as several 
quantitative	metrics	along	the	corresponding	float	trajectory	
in the Mediterranean Sea. Temporal succession of the winter 
vertically	mixed	blooms,	the	onset,	the	time	evolution,	and	
the	depth	of	the	DCM,	which	typically	establishes	during	the	
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Figure 9.28. Time	evolution	of	two	BGC-Argo	floats	in	Mediterranean	Sea	for	Chla	(left)	and	nitrate	(right).	a):	
trajectory	of	the	BGC-Argo	float;	b):	Hovmöller	diagrams	(depth	versus	time)	of	Chla	and	nitrate	concentration	
from	float	data;	c):	model	outputs	matched-up	with	float	position.	Metrics	for	model	(solid	line)	and	float	data	
(dots):	d):	surface	concentration;	e):	0–200	m	vertically	averaged	concentration;	f):	correlation	between	vertical	
profiles;	g):	depth	of	the	deep	chlorophyll	maximum	(blue)	and	depth	of	the	mixed	layer	bloom	in	winter	(red)	
to	the	left,	and	depth	of	the	nitracline	(2	calculation	methods)	to	the	right	(from	Salon	et	al.,	2019).

stratified	season,	are	consistent	in	the	Western	Mediterra-
nean	Sea	(Figure	9.28,	left).	The	analysis	is	completed	by	Chla	
profiles,	nitrate	content,	and	nitrate-based	metrics	(Figure	
9.28,	right)	that	allow	to	evaluate	the	key	coupled	physical–
biogeochemical processes (i.e. water column nutrient con-
tent,	nitracline,	and	effect	of	winter	mixing	and	summer	
stratification	on	the	shape	of	nitrate	profile).	The	shape	of	
the	nitrate	profile	(i.e.	correlation	values),	the	temporal	evo-
lution of the 0-200 m averaged values and of the nitracline 
depth are consistent for the selected float in the Eastern 
Mediterranean Sea.

Figure	9.29	compares	the	seasonal	time	series	of	MLD,	sur-
face	Chla,	NO3,	Si	and	PO4	in	the	North	Atlantic	during	the	
“spring	bloom”,	derived	from	the	BGC-Argo	floats	observa-
tions and from the Global Ocean system of the Copernicus 
Marine Service. The percent bias and percent RMSD are also 
represented for each metric. The model reproduces the sea-
sonal	cycle	of	surface	Chla	and	nutrients,	i.e.	the	timings	of	
minima,	maxima,	and	the	onset	of	the	bloom,	the	winter	Chla	
minimum	and	winter	nutrients	maxima.	However,	the	skill	
metrics deteriorate in summer with the model underestimat-
ing Chla maximum and overestimating NO3 and PO4 minima. 

The	Global	system	skill	for	22	metrics	(Mignot	et	al.,	2021)	is	
summarised	in	the	Taylor	diagram	(Figure	9.30),	which	allows	
for a rapid evaluation of strengths and weaknesses of a model 
simulation.	For	instance,	the	global	model	is	skilled	at	repro-
ducing	oxygen	levels,	cycling	of	nutrients,	and	DIC,	but	the	rep-
resentation	of	Chla,	POC,	spCO2	and	spH	needs	to	be	improved.	

Finally,	DM	validation	can	be	enriched	by	additional	levels	
of	process	and	system	validation	(Hipsey	et	al.,	2020).	These	
aim	to	assess	the	model	performance,	to	simulate	fluxes	
and	rates	of	transformation,	which	drive	changes	in	model	
state	variables,	and	to	verify	emergent	properties	that	are	
not directly predictable by the choices made to build the 
model structure and formulations. Measuring time and 
space	variability	of	in-situ	fluxes	is	difficult	and	highly	re-
source	consuming,	thus	the	list	of	metrics	remains	restrict-
ed	to	few	fluxes,	such	as	rate	of	primary	production,	nutri-
ent	uptake,	grazing	rates,	and	sinking	of	organic	particles.	
Nevertheless,	the	general	confidence	and	fit-for-purpose	in	
the underlying function of biogeochemical operational 
models can be increased by informing users about the un-
certainty of a wider range of processes featured in the 
model formulation.
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Figure 9.29. a):	trajectory	of	a	BGC-Argo	float	located	in	the	North	Atlantic.	Time	series	derived	from	the	
BGC-Argo	(blue)	and	the	model	simulation	(yellow):	b):	mixed	layer	depth;	c):	surface	Chla;	d):	NO3;	e):	Si;	f):	PO4. 
For	each	metric:	g):	seasonal	percent	bias;	h):	percent	RMSD	(from	Mignot	et	al.,	2021).
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Figure 9.30. Comparison	of	BGC-Argo	float	observations	and	model	values	for	22	metrics	using	a	Taylor	dia-
gram. The symbols correspond to the metrics and the colours represent the BGC processes with which they are 
associated	(from	Mignot	et	al.,	2021).

9.2.7. Output

The purpose of this section is to provide recommendations 
and guidelines about the dissemination of products and 
the delivery of services based on BGC OOFS. These recom-
mendations stem from the experience gained by some op-
erational	oceanography	service	centres,	which	deliver	nu-
merical products and have collected users’ needs through 
the	Service	Desk,	a	structure	dedicated	to	answer	and	man-
age	any	user	request.	Products	and	services,	such	as	the	
production,	preparation,	and	delivery	of	operational	ocean	
forecasts	to	users	in	forms	that	meet	their	needs,	are	the	
final	goal	of	an	OOFS.

9.2.7.1. Data formats

Following	the	community	of	physical	oceanographers,	the	
biogeochemical community has widely adopted the NetCDF 
format (🔗24)	and	the	CF	metadata	conventions	(🔗25)	for	
standard names and units. These standards are adopted by 
most operational oceanography actors (e.g. within GODAE 
OceanView),	including	the	groups	that	operate	numerical	
ocean	prediction	systems,	and	also	by	most	of	those	deliv-
ering services based on oceanic observations.

24. https://www.unidata.ucar.edu/software/netcdf/
25. https://cfconventions.org/

CHAPTER 9. BIOGEOCHEMICAL MODELLING 282

https://www.unidata.ucar.edu/software/netcdf/
https://cfconventions.org/
https://www.unidata.ucar.edu/software/netcdf/
https://cfconventions.org/


9.2.7.2. Standard products

A BGC OOFS should offer users a reliable and easy access to 
valuable	ocean	information	(past,	present,	and	forecast).	Each	
system operator should work to ensure that the following 
common	variables	(with	their	acronym	or	formula	in	brackets)	
are produced in delayed-mode and real time bases:

• nitrate concentration [NO3]
• phosphate concentration [PO4]
• dissolved oxygen concentration [O2]
• chlorophyll-a	concentration	[Chla]
• phytoplankton	concentration	(expressed	as	carbon)	
[PHYC]
• net primary production of biomass (expressed as car-
bon)	[NPP]

In	addition	to	the	above	standard	products,	operators	should	
also	make	available	the	following	products,	if	they	are	repre-
sented in the model:

• silicate	concentration	[Si]
• iron	concentration	[Fe]	
• ammonium concentration [NH4]	
• zooplankton	concentration	(expressed	as	carbon,	mass,	
or	mole)	[ZOOC]
• PFTs	chlorophyll-a	concentration	[PFTs]
• dissolved	inorganic	carbon	concentration	[DIC]	
• total	alkalinity	[TALK]
• pH	[pH]
• surface pCO2 [spCO2]
• air-sea CO2	flux	[fCO2]
• light	attenuation	coefficient	[Kd]
• photosynthetic	photon	flux	[PAR]
• euphotic	layer	depth	[ZEU]
• secchi_depth_of_sea_water	[ZSD]

Model data are usually archived in the units specified by 
the	International	System	of	Units	(SI	Units),	being	mole	per	
cubic metre (symbol mol m-3)	for	concentration	in	seawater.

9.2.7.3. Data storage

The 2D or 3D concentrations of the modelled prognostics and 
diagnostics	variables	are	saved	and	stored	instantaneously,	
or	averaged	over	specific	time	periods	(daily,	weekly,	month-
ly,	etc.).	It	has	to	be	underlined	that	to	store	outputs	requires	
substantial	computer	disk	space,	especially	for	biogeochem-
ical models which can generate a lot of variables or derived 
quantities. This should be considered before the operational 
system is set up.

9.2.7.4. Other end-user products

Other	data	and	information,	called	“end-user	products”,	can	
be	derived	from	or	in	addition	to	the	standard	products,	with	
the purpose of building indicators of the marine environ-
ment	for	water	quality	monitoring,	pollution	control	(eutro-
phication	phenomena),	food	web	indicators,	etc.

9.2.7.5. Applications

The	scientific	community	has	identified	key	variables	and	in-
dicators to evaluate current state and likely future condi-
tions	of	the	ocean,	such	as	the	EOV	(from	the	GOOS	Expert	
Panels)	 or	 the	 OMI	 	 (from	 the	 Copernicus	Marine	 Service).	
Oxygen,	 chlorophyll-a,	 primary	 production,	 nutrients,	 pH,	
and	CO2	air-sea	flux	are	monitored	 to	keep	 track	of	ocean	
health	and	changes,	also	to	advise	the	policy	makers.	These	
indicators provide important information also for ecosys-
tem-based	fish	management,	 sustainable	aquaculture,	 and	
fisheries	research.	The	number	of	users	of	BGC	model	prod-
ucts has been steadily increasing during the last years (Fig-
ure	9.31),	highlighting	the	growing	interest	for	BGC.

9.2.8. Higher trophic levels modelling

Researches	by	marine	biologists,	ecologists,	and	fishery	scien-
tists very often use a set of environmental variables to explain 
available observations for one species of interest and make pre-
dictions. Examples of frequently collected information include 
geo-referenced	 fishery	 catch	 data	 or	 acoustic-derived	 abun-
dance	of	a	fish	species,	scientific	sampling	of	eggs,	larvae	or	ju-
veniles,	 satellite	 tracking	of	 individuals	of	 large	fish,	 seabirds,	
turtles	 or	 marine	 mammals,	 or	 simply	 visual	 observations	
(whales).	These	studies	are	based	on	the	correlation	between	

Figure 9.31. Number of distinct users of BGC 
model products of the Copernicus Marine 
Service during the last years (courtesy of the 
Service	Desk).
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outputs of the statistical or mechanistic model developed using 
the	environmental	variables	and	the	observed	variables,	i.e.	the	
presence or abundance of the studied species at a given stage of 
development.	Since	the	relationships	are	defined	using	observa-
tions collected in a very dynamic environment with multiple 
sources	of	variability	in	time	and	space,	it	is	essential	to	use	en-
vironmental variables co-located with the observations. Howev-
er,	due	to	limitation	in	observations,	marine	scientists	most	of-
ten	have	to	aggregate	their	data	sets	to	crude	resolutions,	e.g.	by	
season	or	year	in	large	geographical	boxes,	or	they	restrain	their	
analyses	 to	 satellite-derived	 oceanic	 variables,	 such	 as	 SST	
(available	since	early	1980s),	SSH	(since	1992),	and	sea	surface	
Chla	 concentration	 (since	 1998).	 The	 provision	 of	 these	 satel-
lite-derived variables has generated large progress in the under-
standing of ecology and population dynamics of marine species. 
However,	there	are	still	some	gaps	in	the	use	of	these	variables	
given	that:	 i)	satellites	measure	only	the	surface	of	the	ocean;	
and	ii)	surface	Chla	is	a	proxy	of	primary	production,	which	is	not	
necessarily closely related to the upper trophic level animals 
that	feed	on	zooplankton	or	larger	organisms	(e.g.	micronekton).	
Furthermore,	 in	 the	 development	 phase	 of	 these	 organisms	
(lasting	from	days	to	months),	the	spatial	and	temporal	correla-
tion between primary production and these animals may be lost. 

Modelling	tools	have	the	potential	to	fill	these	gaps,	by	sim-
ulating	the	marine	food	web	with	primary	production,	zoo-
plankton,	and	micronekton	as	essential	variables	to	support	
HTL.	As	explained	 in	Section	9.1.1,	BGC	and	HTL	models	are	
often separate models as they focus on different processes 
but	BGC	models	can	provide	input	for	HTL	models,	and	there	
are	examples	of	BGC-HTL	coupled	models	(e.g.,	Libralato	and	
Solidoro,	2009;	Rose	et	al.,	2015;	Aumont	et	al.,	2018;	Diaz	et	
al.,	 2019).	 However,	 presently	 the	 link	 (online/offline	 cou-
pling)	is	neither	straightforward	nor	fully	investigated.	Thus,	
HTL models currently must rely also on other sources of in-
put,	such	as	satellite	and	in-situ	data	collection.	

Connections,	 challenges,	 and	 expectations	 in	 bridging	BGC	
and HTL modelling are discussed in the next subsections.

9.2.8.1. Essential variables

Primary	production,	 zooplankton,	 and	micronekton	are	 es-
sential ecosystem variables for the development of applica-
tions directed to management and conservation of marine 
resources and its biodiversity. Primary production is the 
source of energy to low and mid-trophic level functional 
groups. Zooplankton are a crucial link between the primary 
producers	 (mainly	 phytoplankton)	 and	 the	micronekton	 at	
the	 mid-trophic	 level	 of	 the	 marine	 food	 web,	 as	 well	 as	
many mid-size pelagic species and some specialised large 
predators	(e.g.	baleen	whales).	Micronekton	is	defined	by	a	
size	range	between	1	and	10	cm,	and	include	many	species	of	

fish,	crustaceans	and	cephalopods,	as	well	as	the	early	life	
stages	of	many	larger	fish	species.	The	micronekton	that	in-
habit permanently the lower mesopelagic depths (~ below 
300-400m)	feed	on	the	organic	matter	sinking	in	the	water	
column.	 All	 micronekton	 organisms,	 including	 the	 species	
temporarily	occupying	this	trophic	level	and	size	range,	are	
the forage of larger marine species that have developed var-
ious skills to detect and feed on them. 

Primary	production,	zooplankton,	and	micronekton	are	thus	key	
inputs	to	investigate	the	mechanisms	driving	fish	recruitment,	
as well as movement and migration of oceanic predators.

9.2.8.2. Satellite-derived and in-situ observations

9.2.8.2.1. Primary production

To	establish	which	mechanisms	control	the	distribution,	re-
cruitment,	and	abundance	of	large	oceanic	exploited	or	pro-
tected	species,	marine	scientists	require	a	three-dimension-
al representation of the environment and not only surface 
observations as those provided by satellites. The existence 
of a deep Chla maximum (e.g. in tropical waters and the Arc-
tic)	is	a	good	illustration	of	the	lack	of	adequation	between	
surface and subsurface. One possible solution for this prob-
lem is to extrapolate the satellite observations over the wa-
ter column according to some empirical models developed 
to	estimate	vertically	integrated	primary	production,	or	NPP,	
based on surface Chla and key variables (SST and solar radi-
ation).	 This	 product	 provides	 an	 essential	 foundation	 to	
monitor	ocean	productivity.	However,	various	flaws	remain,	
there	are	caveats	for	shallow	waters	and	the	Arctic,	as	well	as	
difficulties	in	resolving	persistently	cloudy	regions.	However,	
primary	production	can	also	be	provided	by	BGC	models,	of-
fering the better three-dimensional vision as opposed to the 
satellite-based	estimates,	but	this	solution	is	still	little	used	
although the improvements in BGC models (in particular 
thanks	to	the	use	of	data	assimilation)	are	promising.

9.2.8.2.2. Zooplankton

Zooplankton is certainly the variable on which have been de-
veloped the most advanced applications on larval recruit-
ment,	fish	habitat,	dynamics	of	 small	and	mid-size	pelagic	
species as well as baleen whales. Despite decades of sam-
pling	efforts	at	sea,	zooplankton	observations	remain	limit-
ed to a few valuable long-term time series from oceano-
graphic stations and a partial global climatology from the 
compilation	of	all	available	data	collected,	which	represents	
a	huge	effort	of	data	standardisation	(Moriarty	and	O’Brien,	
2013).	Therefore,	only	numerical	models	can	provide	the	syn-
optic maps of zooplankton distributions needed by ecolo-
gists	and	fishery	scientists.	
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9.2.8.2.3. Micronekton

Micronekton	species,	including	a	huge	biomass	of	mesope-
lagic	 organisms,	 are	 among	 the	 largest	 unknowns	 in	 the	
functioning of the global ocean ecosystem. This is a critical 
gap to understand the ecology of their predators for which 
there is a lot of interest in terms of resource management 
and	 conservation.	 In	 recent	 years,	 climate	 change,	 carbon	
storage	in	the	deep	ocean,	and	the	role	of	diel	vertical	migra-
tion	of	mesopelagic	(and	zooplankton)	have	become	major	
scientific	issues.	

But,	even	more	than	for	zooplankton,	the	sparsity	of	obser-
vations on a global scale and over time poses a real problem 
for modellers of higher trophic levels. The traditional ap-
proach for sampling micronekton is net trawling. Many stud-
ies	are	simply	qualitative	descriptions	of	species,	quite	often	
used in combination with acoustic sampling to support the 
extrapolation of acoustic signal to biomass estimates. How-
ever,	 biomass	 based	 on	 acoustic	 sampling,	 especially	with	
one	single	frequency,	can	be	easily	biased	by	one	or	two	or-
der of magnitudes due to the very strong resonance (back-
scatter)	of	some	organisms,	e.g.	gelatinous	organisms	con-
taining	 gas	 bubbles	 (Proud	 et	 al.,	 2018)	 or	 conversely	 very	
weak	resonance	despite	large	biomass,	e.g.	fish	without	swim	
bladder	(Dornan	et	al.	2019;	Escobar-Flores	et	al.	2019).	In	the	
absence	of	sufficient	data	coverage,	relatively	simple	model-
ling approaches are used to simulate these functional groups 
in	 a	 food	web	model,	 relying	 on	 allometric	 scale	 relation-
ships,	 first	 macro-ecological	 principles,	 or	 fluxes	 between	
trophic boxes. 

9.2.8.3. Models of zooplankton and mid-trophic levels

9.2.8.3.1. Complexified BGC models

Improving resolution of primary production in BGC models 
helps	to	get	better	zooplankton	predictions,	although	the	re-
lationship is not so straightforward. The reason is that in 
models the zooplankton component is used as the closure 
term of the biogeochemical cycles. To compensate for the 
lack in biogeochemical models of zooplankton predation by 
higher	 trophic	 levels,	 a	mortality	 function	 with	 a	mortality	
rate	increasing	rapidly	(quadratic	term)	is	used	to	avoid	nu-
merical instability at high levels of biomass. A high mortality 
rate is realistic in warm tropical waters but less for cold wa-
ters	 in	 which	 the	 lifespan	 of	 zooplankton	 is	 much	 longer,	
leading to high biomass persisting during fall. Underestimat-
ed zooplankton biomass can then have a cascading effect on 
the phytoplankton mortality. To address this issue in biogeo-
chemical	models,	it	may	help	the	addition	of	a	trophic	level	
feeding	on	zooplankton,	e.g.	the	micronekton	at	the	interme-
diate	trophic	level,	or	a	simplified	representation	of	the	entire	
upper food web with a size spectrum approach (Zhou et al 
2010).	Gelatinous	organisms	are	also	increasingly	recognised	

as a key group in marine biogeochemical cycles as they need 
to be included to account for zooplankton mortality. A recent 
development	consisted	in	the	introduction	of	a	jellyfish	func-
tional group in the biogeochemical model PLANKTOM (Wright 
et	al.,	2021),	suggesting	that	 it	can	have	a	large	direct	 influ-
ence on the zooplankton as well as on the other groups 
through	 trophic	 cascades.	 However,	 parameterisation	 of	
physiological rates and validation of micronekton and jelly-
fish	carbon	biomass	are	limited	by	the	deficit	of	data	on	these	
species.	 Moreover,	 adding	 mid-trophic	 level	 compartments	
would	still	increase	complexity	of	BGC	models,	which	are	al-
ready complicated as including dozens of variables.

9.2.8.3.2. Spatially explicit models with transport

Models with less complexity and easier to parameterize can be 
used in the meantime. They are useful approaches comple-
mentary	to	more	complex	BGC	models,	allowing	faster	testing	
studies,	 e.g.	 for	 processes	 and	 new	 functional	 groups,	 with	
outputs providing useful intermediate benchmarks. These 
models do not include all the detailed biogeochemical cycles 
but	 focus	on	 food	web	 functional	 groups,	 size	 spectrum,	or	
target species. The link with the lower trophic level can be as 
simple	as	an	energy	transfer	coefficient	between	primary	pro-
duction and each functional group. A key advantage of re-
duced complexity is the greater facility to implement quantita-
tive methods to estimate parameters using available 
observations,	whether	at	global	or	 regional	 level.	Neverthe-
less,	such	models	still	simulate	the	transport	by	oceanic	cur-
rents,	either	based	on	advection-diffusion	equations	like	the	
ocean	circulation	and	BGC	models	(Maury	et	al.,	2007;	Lehodey	
et	 al.,	 2010),	 or	 with	mean	 transfers	 between	 adjacent	 grid	
cells	and	geographical	boxes	(Audzijonyte	et	al.,	2019).	Trans-
port can be also simulated using Lagrangian IBM approaches 
that keep track of individuals or meta-individuals character-
ised	by	individual	state	variables	(weight,	length,	energy	stor-
age,	 life	 stage,	 etc)	 and	 behavioural	 rules.	 However,	 due	 to	
computational	 cost,	 this	 approach	 is	 still	 usually	 limited	 to	
regional	domains	or	single	species	(DeAngelis	and	Gross,	1992;	
Carlotti	and	Wolf,	1998;	Miller	et	al.,	1998;	Huse	et	al.,	2018).	

9.2.8.3.3. Ecosystem food web and size spectrum models

Other modelling approaches are oriented towards a represen-
tation of the ecosystem food web to explore the interactions 
between	fisheries	and	exploited,	by-catch,	or	protected	spe-
cies	 (Christensen	 and	 Walters,	 2004).	 Zooplankton	 and	
mid-trophic	 levels	 are	 often	 defined	 by	 a	 small	 number	 of	
functional	groups	in	the	food	web	interactions.	The	difficulty	
comes from the rapid increase in the number of parameters as 
functional groups and species are added in the food web 
model. The increasing complexity in the network of connec-
tions	between	the	numerous	groups,	species	and	sometimes	
life	stages	of	species,	is	developed	at	expense	of	the	spatial	
description. A few approaches combine such complexity with 
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a	semi-spatially	explicit	representation,	i.e.	through	bulk-trans-
fer between geographical regions or cells from various sizes 
(e.g.	Audzijonyte	et	al.,	2019).	The	size	spectrum	is	an	approach	
that	strongly	simplifies	the	view	of	a	marine	ecosystem.	

The size-based ecosystem modelling is a classical approach 
that is used to predict biomass distribution and size-structure 
of	marine	consumers	(see	review	in	Blanchard	et	al.,	2017).	Jen-
nings	and	Collingridge	(2015)	have	developed	this	approach	at	
global scale. The model predicts rates and magnitudes of en-
ergy	flux	from	primary	producers	to	consumers	that	depend	
on	primary	production,	transfer	efficiency,	predator	and	prey	
body	mass,	and	temperature.	Biomass	is	estimated	in	the	wa-
ter column without considering the horizontal transport nor 
the	vertical	structure,	and	mesopelagic	communities	are	not	
explicitly	modelled.	Maury	et	al.	(2007)	have	developed	a	sim-
ilar size-spectrum approach but that also accounts for the in-
fluence	 of	 spatial	 dynamics	 and	 vertical	 diel	migration.	 Au-
mont	 et	 al.	 (2018)	 have	 fully	 coupled	 this	 latter	model	 to	 a	
physical-biogeochemical model allowing to explore two-way 
interactions between lower and higher trophic levels of the 
pelagic	ecosystem.	Petrik	et	al.	(2019	and	2020)	have	proposed	
another approach that discretizes the size spectrum into a few 
stage-structured	functional	groups	as	in	De	Roos	et	al.	(2008).	
Their demographic system at each spatial grid cell is forced 
offline	by	vertically	integrated	temperature,	vertically	integrat-
ed	zooplankton	biomass	concentrations	and	mortality	losses,	
bottom	temperature,	and	detrital	fluxes,	but	there	is	no	trans-
port	or	fish	movement.	

There is no simple solution to model end-to-end ocean eco-
systems	 (Fulton,	 2010)	 but	 various	 approaches	 that	 reflect	
the	different	scientific	questions	 that	are	 investigated.	The	
demand for greater details in taxonomic representation and 
population	dynamics	(including	transport,	recruitment,	and	
migrations)	of	target	species,	creates	major	problems	in	cal-
culation,	 estimation	 of	 parameters,	 and	 analysis	 of	 uncer-
tainties,	which	may	 be	 a	 critical	 issue	 if	 the	model	 has	 to	
support management and policy decisions. For these rea-
sons,	to	formulate	management	advice	for	quotas	of	catches	
and/or	effort	and	conservation	measures,	RFMOs	mostly	rely	
on	standard	stock	assessment	modelling	approaches,	fitted	
to	key	target	species	and	fisheries.	These	models	have	been	
used since the 1960s and can integrate multiple sources of 
information to estimate the key parameters of population 
dynamics	 and	 fisheries	 for	 a	 single	 species	 (Maunder	 and	
Punt,	2013).	However,	they	treat	the	environmental	variability	
as	noise	that	is	removed	from	fishing	data	using	standardisa-
tion methods or integrated as a random signal in the predict-
ed	 recruitment	 process,	 and	 thus	 they	 cannot	 be	 used	 to	
project mid- to long-term changes (e.g. climate change ef-
fects	on	fisheries).

9.2.8.4. Contribution from operational oceanography 

Improved BGC models with assimilation of in-situ and satel-
lite data is an approach with promising results and rapid 
progress.	Thanks	to	data	assimilation,	the	physical	and	bio-
geochemical models used in operational oceanography to 
predict and forecast ocean physics and primary production 
are	becoming	more	and	more	accurate.	Consequently,	 they	
are	used	by	an	increasing	number	of	marine	biologists,	ecol-
ogists,	and	fishery	scientists.	The	outputs	of	biogeochemical	
models are also essential to explore the historical period 
before	the	satellite	era,	which	started	in	the	late	1970s	(see	
Figure	9.7).	The	information	generated	by	BGC	models	is	also	
needed to develop seasonal forecasting of ocean ecosys-
tems,	 population	 dynamics	 of	 marine	 animals,	 and	 to	 ex-
plore the impact of climate change with long-term projec-
tions,	once	forced	by	Earth	System	Models.	Many	BGC	models	
also	provide	dissolved	oxygen	concentration	and	pH,	which	
are	useful	variables	for	modelling	habitats	of	fishes.	Finally,	
the recent progress achieved in operational oceanography 
contributes to an overall improvement of all types of zoo-
plankton,	micronekton	and	ecosystem	models.	

A global zooplankton and micronekton model-based product 
(Lehodey	et	al.,	2010	and	2015)	is	delivered	in	the	Copernicus	
Marine	Service.	With	only	11	parameters,	the	model	simulates	
one functional group of zooplankton and six functional groups 
of	micronekton	in	the	global	ocean,	with	a	vertical	structure	
simplified	 into	 three	 layers	 in	 the	water	column	 (epipelagic,	
and	upper-	and	lower-mesopelagic)	allowing	to	consider	ver-
tically migrant and non-migrant mesopelagic behaviours. The 
functional	groups	are	driven	by	primary	production,	euphotic	
depth,	temperature,	and	horizontal	currents	with	time	of	de-
velopment and mortality rate linked to water temperature. The 
limited number of parameters allows implementing quantita-
tive methods to estimate their optimal values by searching for 
the	best	fit	between	observations	and	predictions	(Lehodey	et	
al.,	2015).	However,	the	sparsity	of	direct	biomass	observations	
and	the	difficulty	to	convert	the	signal	of	acoustic	echo-sound-
ers into biomass is still an issue that requires further develop-
ments.	In	particular,	there	is	the	need	to	progress	on	acoustic	
models	(Jech	et	al.,	2015).	

9.2.8.5. Applications

Zooplankton and micronekton outputs produced by the Co-
pernicus Marine Service have proved to be useful variables 
along with physical and biogeochemical variables to model 
feeding	habitats,	feeding	behaviour,	and	migrations	of	large	
oceanic protected species such as marine mammals and tur-
tles	(e.g.,	Abecassis	et	al.,	2013;	Lambert	et	al.,	2014;	Cham-
bault	 et	 al.,	 2016;	 Roberts	 et	 al.,	 2016;	 Green	 et	 al.,	 2020;	
Pérez-Jorge	 et	 al.,	 2020;	 Romagosa	 et	 al.,	 2020	 and	 2021).	
These	applications	contribute	to	the	scientific	advice	needed	
to	propose	marine	spatial	management	measures	(e.g.,	Ma-
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rine	Protected	Areas	and	Migratory	Corridors),	the	planning	
of	activities	at	seas	(e.g.,	offshore	energy,	military	exercises	
and	tests,	and	navigation	routes),	and	real-time	operational	
tools	to	limit	the	interaction	of	fisheries	with	protected	spe-
cies	 (Howell	 et	 al.,	 2008;	 Hobday	 et	 al.,	 2010;	 Hazen	 et	 al.	
2018).	 The	 combination	 of	 zooplankton	 and	 micronekton	
variables has been used in a mechanistic model of Antarctic 
krill	population,	including	food	conditions	that	adults	need	
to successfully produce eggs and the density of predators 
feeding	on	spawned	eggs	(Green	et	al.	2021).	

Finally,	spatially	explicit	population	dynamics	of	target	spe-
cies	can	be	driven	by	these	variables	to	study	recruitment,	
natural	 mortality,	 and	 movements	 linked	 to	 feeding	 be-
haviour	 and	 spawning	 migrations	 of	 fish	 (Lehodey	 et	 al.,	
2008;	Dueri	et	al.,	2012;	Hernandez	et	al.,	2014;	Scutt	Phillips	
et	al.,	2018;	Senina	et	al.,	2019).	These	models,	combined	with	
quantitative methods integrating various sources of georef-
erenced	 data	 (i.e.	 catch,	 size	 frequencies	 of	 catch,	 tagging	
data,	 density	 of	 larvae,	 and	 acoustic	 biomass	 abundance),	
provide new tools to assess the status of exploited stocks 
(Senina	et	al.,	2008	and	2020;	Dragon	et	al.,	2018),	to	test	spa-
tial	management	 scenarios	 (Sibert	 et	 al.,	 2012),	 to	 develop	
real	time	monitoring	applications	(Lehodey	et	al.,	2017),	and	
forecast seasonal to long-term changes along with IPCC cli-
mate	scenarios	(Lehodey	et	al.,	2013;	Dueri	et	al.,	2014;	Bell	et	
al.,	2013	and	2021).

9.2.9. Inventories

The	first	Green	Ocean	applications	of	operational	oceanogra-
phy,	coupling	biogeochemical	models,	and	assimilation	com-
ponents	from	the	existing	GODAE	systems,	were	discussed	in	

Brasseur	et	al.	(2009).	Some	years	later,	Gehlen	et	al.	(2015)	
and	Fennel	et	al.	(2019)	discussed	the	current	state	and	fu-
ture prospects of analysis and prediction tools for ocean bio-
geochemistry	and	ecosystems,	and	presented	representative	
examples of global and regional physical–biogeochemical 
systems implemented in pre-operational or operational 
mode.	Currently,	a	 few	forecasting	systems	are	fully	opera-
tional,	 i.e.	maintained	 by	 an	 operational	 centre	with	 strict	
commitment to routinely provide forecasts.

Tables 9.1 and 9.2 provide initial inventories of the operation-
al	 forecasting	and	multi-year	systems,	based	on	the	 litera-
ture mentioned above and completed in collaboration with 
the MEAP-TT working group that is one of the OceanPredict 
Task	 Teams.	 General	 information	 is	 given	 for	 each	 system,	
along	with	type	(from	global	to	coastal	scale),	producer,	res-
olution,	implemented	model,	data	assimilation	method,	and	
product	catalogue,	as	well	as	the	web	address	that	the	read-
er can consult for further details.

Table 9.1. 	 Initial	inventory	of	BGC	Global	(G)	to	Regional	(R)	to	Coastal	(C)	operational	forecasting	systems.

WebsiteProductsBGC Data Assimilation  
(method and data) 

PHY-BGC 
models 

ResolutionCovered 
Area 

SystemType

https://marine.
copernicus.eu 

G Global Ocean BGC 
system	(MOI,	France)

Global 
ocean 

1/4° PISCES coupled 
offline	with	
NEMO (1/12° 
degraded to 
1/4°)	at	daily	

frequency

SEEK	method,	using	
total Chla from OC 

satellite data

Chla,	NO3,	PO4,	
Si,	Fe,	O2,	PHYC,	
NPP,	spCO2,	pH,	
10-days	forecast,	
updated weekly
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WebsiteProductsBGC Data Assimilation  
(method and data) 

PHY-BGC 
models 

ResolutionCovered 
Area 

SystemType

https://marine.
copernicus.eu

https://marine.
copernicus.eu

https://marine.
copernicus.eu

https://marine.
copernicus.eu

https://marine.
copernicus.eu

R

R

R

R

R

Northwest European 
Shelf Seas BGC sys-
tem	(UK	Metoffice,	

UK)

TOPAZ5-ECOSMO 
Arctic Ocean system 
(Norwegian Meteo-
rological	Institute,	
Norway; Nansen 

Environmental and 
Remote Sensing 
Center,	Norway)	

Baltic Sea system 
(Swedish Meteoro-
logical and Hydro-
logical	Institute,	

Sweden)	

Iberia-Biscay-Irish 
system	(MOI,	France	

+	consortium)	

MedBFM3 model 
system (Euro Med-
iterranean Center 
on Climate Change 
-	CMCC,	Italy;	OGS,	

Italy)	

European 
North-
West 

shelf Seas

Arctic 
Region

Baltic Sea

Iberi-
an-Bis-

cay-Irish 
shelves 

Mediter-
ranean 

Sea 

~7 km

6 km

1 nautical 
mile

1/36° 

1/24°

ERSEM coupled 
online with 

NEMO

ECOSMO bio-
logical model 

coupled online 
to	the	HYCOM	
ocean physical 

model 

ERGOM coupled 
online with 

NEMO

NEMO-PISCES 
online coupled 
model; nested 
into	PHY	and	
BGC solutions 

from the Global 
MFC

BFM	v5	model,	
off-line cou-

pled with NEMO 

3D-Var NEMOVAR 
method,	using	total	

Chla from OC satellite 
data

Assimilates Chla 
from OC satellite 

data using a nudging 
approach,	and	surface	

observations are 
projected downward 
in the water column 

applying an algorithm 
described by Uitz et 

al.	(2006).	

_

No assimilation 

3DVAR-BIO	method,	
using Chla from 

satellite and vertical 
profiles	of	Chla	and	

nitrate  from BGC-Argo

Chla,	NO3,	PO4,	
O2,	PHYC,	NPP,	
spCO2,	pH,	Kd,	
6-day	forecast,	
updated daily

Chla,	NO3,	PO4,	
Si,	O2,	PHYC,	
ZOOC,	NPP,	

spCO2,	DIC,	pH,	
Kd,	10-day	fore-
cast,	updated	

daily 

Chla,	NO3,	PO4,	
NH4,	O2,	spCO2,	
pH,	NPP,	ZSD,	
6-day	forecast,	
updated twice 

daily

Chla,	NO3,	NH4,	
PO4,	Si,	Fe,	

O2,	PHYC,	NPP,	
spCO2,	DIC,	pH,	
ZEU,	10-days	

forecast updat-
ed on a weekly 

basis 

Chla,	PHYC,	
ZOOC,	NO3,	

NH4,	PO4,	Si,	O2,	
spCO2,	pH,	fCO2,	
ALK,	DIC,	NPP,	

10-day forecast 
updated daily 
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WebsiteProductsBGC Data Assimilation  
(method and data) 

PHY-BGC 
models 

ResolutionCovered 
Area 

SystemType

https://marine.
copernicus.eu

https://www.po-
seidon.hcmr.gr

http://www.na-
noos.org/prod-
ucts/j-scope/
home.php 

https://coast-
alscience.noaa.
gov/research/
stressor-im-
pacts-mitiga-
tion/hab-moni-
toring-system/ 

https://ereefs.
org.au/ereefs

www.vims.edu/
hypoxia; https://
oceansmap.
maracoos.org/
chesapeake-bay/

R

R

C

C

C

C

Black Sea system 
(University	of	Liege,	

Belgium)	

POSEIDON system 
(HCMR,	Greece)	

J-SCOPE	forecast	
system	(JISAO’s	Sea-
sonal Coastal Ocean 

Prediction of the 
Ecosystem,	funded	

by	NOAA,	US)	

Harmful Algal Bloom 
Monitoring System 
(National Centers 
for Coastal Ocean 
Science,	formed	by	
the	NOAA,	US)	

Great Barrier Reef 
(Bureau of Meteo-

rology	et	al.)	

Chesapeake Bay

Black Sea 

Mediter-
ranean 

Sea 

California 
Current 
System 

Coastal 
and lake 

regions of 
the US 

Great 
Barrier 

Reef 

Chesa-
peake 

Bay

~3km 

1/10° 

1/10° 

_ 

_ 

600m

BAMHBI,	online	
coupled with 

NEMO 

ERSEM-II 
model,	on-line	
coupled with 

POM 

ROMS ocean 
model coupled 

with a BGC 
model 

_ 

CSIRO eReefs 
modeling suite 

ChesROMS-ECB

“Ocean Assimilation 
Kit” (OAK; Vanden-
bulcke	and	Barth,	

2015)	for	assimilation	
of surface Chla from 

satellite 

No assimilation 

_

_

_

_

Chla,	PHYC,	NO3,	
PO4,	Si,	NH4,	
O2,	spCO2,	pH,	
fCO2,	ALK,	DIC,	
NPP,	Kd,	PAR,	

10-day forecast 
produced daily 

Chla,	PHYC,	
ZOOC,	BACC,	

NO3,	NH4,	PO4,		
4-day forecast 
updated daily 

Seasonal 
forecasts of 
sea surface 
temperature 
(SST)	and	BGC	

variables 

Daily forecast 

A few days 
forecast 

Nowcasts and 
a few days 

forecasts of 
physical and 
BGC variables 
(focusing on 

O2,	acidification	
metrics,	T,	S)
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Table 9.2. 	 Inventory	of	BGC	Global	(G)	to	Regional	(R)	to	Coastal	(C)	multi-year	systems.

WebsiteProductsBGC Data Assimilation  
(method and data) 

PHY-BGC 
models 

ResolutionCovered 
Area 

SystemType

https://marine.
copernicus.eu

https://www.
cls.fr/

https://marine.
copernicus.eu

https://marine.
copernicus.eu

https://marine.
copernicus.eu

G 

G

R

R

R

Global Ocean BGC 
system	(MOI,	France)	

Global Ocean low 
and mid-trophic 

levels	product	(CLS,	
France)	

Northwest European 
Shelf Seas BGC 
system (UK Met 
Office,	UK)	

TOPAZ-ECOSMO 
reanalysis system 
(Nansen Environ-

mental and Remote 
Sensing	Center,	

Norway)	

Baltic Sea system 
(Swedish Meteoro-
logical and Hydro-
logical	Institute,	

Sweden)	

Global 
ocean 

Global 
ocean 

European 
North-
West 

shelf Seas 

Arctic 
Region 

Baltic Sea 

1/4° 

1/12° 

~7 km

25 km 

1 nautical 
mile 

PISCES,	coupled	
offline	with	

NEMO at daily 
frequency 

LMTL com-
ponent of 
SEAPODYM	

dynamical pop-
ulation	model,	
driven	offline	
by	NEMO,	NPP	
from satellite 
and PISCES 

ERSEM,	coupled	
online with 

NEMO 

ECOSMO bio-
logical model 

coupled online 
to	the	HYCOM	
ocean physical 

model 

SCOBI coupled 
to NEMO 

No assimilation 

No assimilation 

3D-Var NEMOVAR 
method,	using	surface	

PFT Chla from OC 
satellite data 

Assimilates surface 
Chla a from OC 

satellite and in-situ 
nutrient	profiles,	using	
an Ensemble Kalman 
Smoother	(EnKS)	

method,	after	a	gauss-
ian anamorphosis for 
all BGC data. EnKS is 
preferred to EnKF in 

delayed mode 

LSEIK data assimila-
tion	scheme,	using	

oxygen and nutrients 

Chla,	NO3,	PO4,	
Si,	Fe,	O2,	PHYC,	
NPP,	spCO2,	pH,	
1993 onwards 

2D	fields	of	
zooplankton 
biomass and 
six groups of 
micronekton 
biomass,		1998	

onwards 

Chla,	PFTs,	
PHYC,	NO3,	PO4,	
O2,	spCO2,	pH,	
NPP,	Kd,	1993	

onwards 

Chla,	NO3,	
PO4,	O2,	PHYC,	
ZOOC,	Kd,	2007	

onwards 

Chla,	NO3,	NH4,	
PO4,	O2,	1993	

onwards 
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WebsiteProductsBGC Data Assimilation  
(method and data) 

PHY-BGC 
models 

ResolutionCovered 
Area 

SystemType

https://marine.
copernicus.eu

https://marine.
copernicus.eu

https://marine.
copernicus.eu

https://marine.
copernicus.eu

https://ocean.
ust.hk:8443/
SiteMapApi/
new/index.jsp

R

R

R

R

R

Iberia Biscay Irish 
system	(MOI,	France)	

Global Ocean low 
and mid-trophic 

levels	product	(CLS,	
France)	

MedBFM3 model 
system	(OGS,	Italy)	

Black Sea system 
(University	of	Liege,	

Belgium)	

China Sea Multi-
Scale Ocean 

Modelling System 
(CMOMS)

Irish-Bis-
cay-Ibe-

rian 
shelves 

Global 
ocean 

Mediter-
ranean 

Sea 

Black Sea 

China 
Seas

1/12°  

1/12° 

1/24° 

~3km 

~3km 

NEMO-PISCES 
online coupled 
model; nested 
into	PHY	and	
BGC solutions 

from the Global 
MFC

LMTL com-
ponent of 
SEAPODYM	

dynamical pop-
ulation	model,	
driven	offline	
by	NEMO,	NPP	
from satellite 
and PISCES 

BFM	v5	model,	
off-line cou-

pled with NEMO 

BAMHBI	model,	
online coupled 

with NEMO 

ROMS ocean 
model coupled 

with a BGC 
model 

No assimilation 

No assimilation 

3DVAR-BIO	method,	
using surface Chla 

No assimilation 

No assimilation 

Chla,	NO3,	NH4,	
PO4,	Si,	Fe,	

O2,	PHYC,	NPP,	
spCO2,	DIC,	
pH,	ZEU,	1993	

onwards 

2D	fields	of	
zooplankton 
biomass and 
six groups of 
micronekton 
biomass,		1998	

onwards 

Chla,	PHYC,	
ZOOC,	NO3,	

NH4,	PO4,	Si,	O2,	
spCO2,	pH,	fCO2,	
ALK,	DIC,	NPP,	
1999 onwards 

Chla,	PHYC,	O2,	
NO3,	PO4,	spCO2,	
pH,	fCO2,	ALK,	
DIC,	NPP,	1992	

onwards 

Chla,	PHYC,	
ZOOC,	NO3,	NH4,	
PO4,	O2,	spCO2,	
pH,	ALK,	DIC,	
small	detritus,	
large	detritus,	
terrestrial	POM,	
and terrestri-
al DOM; 1992 

onwards
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