
9. 
Biogeochemical modelling

CHAPTER COORDINATOR 

Elodie Gutknecht

CHAPTER AUTHORS (in alphabetical order) 

Laurent Bertino, Pierre Brasseur, Stefano Ciavatta, Gianpiero Cossarini, Katja Fennel, David Ford, 

Marilaure Grégoire, Diane Lavoie, and Patrick Lehodey



9. Biogeochemical modelling
9.1. General introduction to Biogeochemical models

9.1.1. Objective, applications and beneficiaries

9.1.2. Fundamental theoretical background
9.1.2.1. Biogeochemical modelling

9.1.2.2. Model calibration

9.1.2.3. Physical-Biogeochemical coupling

9.1.2.4. From open ocean to coastal ecosystems

9.1.2.5. Potential predictability of ocean biogeochemistry

9.2. Biogeochemical forecast and multi-year systems
9.2.1. Architecture singularities

9.2.1.1. Physical, optical, and biogeochemical components

9.2.1.2. Propagation of uncertainties

9.2.1.3. BGC Data singularities

9.2.2. Input data: available sources and data handling
9.2.2.1. Physical conditions

9.2.2.2. Observational data

9.2.2.3. Climatologies, databases, and atlases

9.2.2.4. Atmospheric surface forcing

9.2.2.5. External inputs

9.2.2.6. Units

9.2.3. Modelling component
9.2.3.1. Numerical and discretisation choices

9.2.3.2. The different biogeochemical models

9.2.3.3. Connections Ocean-Earth systems

9.2.4. Ensemble modelling

9.2.5. Data assimilation systems
9.2.5.1. Biogeochemical state and parameter estimation

9.2.5.2. Assimilated observational products

9.2.5.3. Biogeochemical data assimilation methods

9.2.5.4. Current challenges and opportunities



9.2.6. Validation strategies 
9.2.6.1. Near-real time evaluation

9.2.6.2. Delay mode evaluation

9.2.7. Output
9.2.7.1. Data formats

9.2.7.2. Standard products

9.2.7.3. Data storage

9.2.7.4. Other end-user products

9.2.7.5. Applications

9.2.8. Higher trophic levels modelling
9.2.8.1. Essential variables

9.2.8.2. Satellite-derived and in-situ observations

9.2.8.3. Models of zooplankton and mid-trophic levels

9.2.8.4. Contribution from operational oceanography 

9.2.8.5. Applications

9.2.9. Inventories

9.3. References



Summary
Marine biogeochemistry is the study of essential chemical 
elements in the ocean (such as carbon, nitrogen, oxygen, 
and phosphorus), and of their interactions with marine or-
ganisms. Biogeochemical cycles are driven by physical trans-
port, chemical reactions, absorption, and transformation by 
plankton and other organisms, which form the basis of the 
oceanic food web.

In the last decades, the interest for this cross-disciplinary 
science has greatly increased due to the occurrence of sig-
nificant changes in the marine environment closely linked 
to the alteration of the biogeochemical cycles in the ocean. 
These alterations include phenomena such as acidification, 
coral bleaching, eutrophication, deoxygenation, harmful al-
gal blooms, regime shifts in plankton, invasive species, and 
other processes deteriorating water quality and impacting 
the whole marine ecosystem. 

Monitoring and forecasting the biogeochemical and ecosystem 
components of the ocean, also referred to as “Green Ocean”, 
are essential for a better understanding of the current status 
and changes in ocean health and ecosystem functioning. Such 
operational systems provide indicators useful to scientists, 
industry (e.g. fisheries and aquaculture), policy makers and 
environmental agencies for the prediction of events, the man-
agement of living marine resources, and can support the deci-
sion-making process to respond to environmental changes.

This chapter gives an overview of the Green Ocean component of 
OOFS. The first section addresses the objectives, applications 
and beneficiaries of the Green Ocean and introduces the funda-
mental theoretical knowledge of marine biogeochemical model-
ling. The second section details and discusses each component 
of a biogeochemical OOFS to guide new forecasters in biogeo-
chemistry. Modelling of higher trophic levels is introduced. Final-
ly, several operational systems are mentioned as examples.

Figure 9.1.		 Threats on marine ecosystems. 
Changes and alterations in the marine envi-
ronment observed in recent decades include 
acidification, coral bleaching, eutrophication, 
deoxygenation, harmful algal blooms, changes in 
planktonic regimes, invasive species, etc. 

9.1.	  
General introduction to Biogeochemical models
9.1.1.	 Objective, applications and beneficiaries

Human activities, primarily the combustion of fossil fuels, 
cement production, and the industrial production of nitro-
gen-based fertilisers, are leading to ocean warming, acidifi-
cation, deoxygenation, and coastal eutrophication, thus put-
ting ever-increasing and compounding pressures on marine 
ecosystems (Figure 9.1). 

At the same time, the ocean is serving as a major sink of car-
bon dioxide (CO2), the most important anthropogenic green-
house gas. This contributes to mitigating global warming, but 
the magnitude of this sink is likely to diminish. Our ability to 
quantify these phenomena and project their future course 
hinges on a mechanistic understanding of the biogeochemical 
cycles of carbon, oxygen, and nutrients in the ocean and how 
they are changing.

The Marine BGC, the study of elemental cycles and their in-
teractions with the environment and living organisms, is a 
multidisciplinary science at the crossroads between ocean 
physics, chemistry, and biology, and intersects with atmo-
spheric and terrestrial sciences as well as social science and 
environmental policy. As an example, Figure 9.2 illustrates 
the complex carbon cycle in the ocean and the interactions 
between biological, chemical, and physical processes.
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Ocean BGC models describe the base of the marine food 
chain from bacteria to mesozooplankton and couple the cy-
cles of carbon (C), nitrogen (N), oxygen (O2), phosphorus (P) 
and silicon (Si). They mostly focus on plankton, classifying 
the plankton diversity in accordance with their functional 
characteristics, the so-called Plankton Functional Types 
(PFTs). Species at higher trophic levels, such as fish and ma-
rine mammals play a lesser role in elemental cycling, they 
are thus generally not explicitly represented in BGC models, 
but they are very important for ecosystem models that fo-
cus on the ecology/biology of marine organisms. BGC and 
ecosystem models are sometimes referred to indistinctly 
because they can overlap in their representation of the 

lower trophic levels. Specific modelling approaches, like 
Lagrangian modelling, habitat modelling, or food web mod-
els, are used to connect BGC with the high trophic levels 
(e.g. fish).1

The implementation of accurate OOFSs requires sustained, 
systematic, and NRT observation from (sub)mesoscale to 
large scale to initialise, parameterize, and validate ocean 
models. NRT information in operational oceanography 
means a description of the present situation with a delay of 
a few minutes to a few days.

1. https://www.ornl.gov/

Figure 9.2.		 Cycling of carbon in the marine food chain. Phytoplankton assimilate CO2 via photosynthesis in 
the euphotic zone and are consumed by zooplankton. Zooplankton are the initial prey for many small and large 
aquatic organisms. Carbon is thus transferred further up the food web to higher-level predators. Different 
mechanisms contribute to the export and storage of carbon into the deep ocean. The carbon cycle in the ocean 
is complex and influenced by biological, chemical, and physical processes (credit: Oak Ridge National Labora-
tory at 🔗1).
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The forecast of ocean physics has considerably improved in the 
last decades, reaching a high level of predictability (Chapter 5). 
The evolving equations governing the physical dynamics are 
based on physical laws, the model parameterizations are quite 
well-established, and the abundance of observations for tem-
perature, salinity, and sea level height offers a way to improve 
model predictions through data assimilation. Forecasting of the 
Green Ocean has been developed more recently and it has not 
yet reached the same level of maturity, in most cases being in-
corporated into already existing physical OOFS. The formulation 
of ecosystem models is still empirical and the scarcity of in-situ 
biological and BGC data critically limits the capabilities to con-
strain their parameterization and to improve their performanc-
es through a robust data-model comparison exercise and data 
assimilation. The scarcity of data is even more critical in NRT, 
limiting data assimilation to surface chlorophyll-a (Chla) de-
rived from satellite reflectance (Fennel et al., 2019).

The advent of in-situ robotic platforms combined with high res-
olution satellite products for the Green Ocean have the poten-
tial to palliate this deficiency. For instance, the advent of hyper-
spectral satellites is promising in terms of delivery of surface 
information on PFTs, detection of harmful algal blooms, and 
benthic habitat mapping, while the boost in robotic platforms 
will offer huge opportunities to map the (deep) seafloor with an 
unprecedented level of details. The combination of marine ro-
botics, image analysis, machine learning, new sensor develop-
ment, and the coordination of robotic platforms and satellite 
sensors will constitute a significant breakthrough in our knowl-
edge of marine ecosystems. All this information would need to 
be integrated in models for forecasting and producing high 
quality reanalysis of the Green Ocean to support the production 
of added value products and innovative services. Coordination 
of Ocean OSSEs can help to design the new observing biological 
and biogeochemical systems with maximal impact to users, yet 
their development is still insufficient and should be encouraged 
(Le Traon et al., 2019).

Ultimately, BGC OOFS systems serve major environmental 
and societal issues, including the Ocean's role in the global 
carbon cycle and the impacts of natural changes and anthro-
pogenic stressors in the physical-chemical marine environ-
ment on ecosystems and human activities. Applications 
range from multi-decadal retrospective simulations (namely, 
“reanalyses”), operational analysis of the current conditions 
(“nowcasts”), short-term and seasonal predictions (“fore-
casts”), scenario simulations, and climate change projec-
tions. These integrated systems are essential not only for a 
better understanding of the current status of key biogeo-
chemical and ecosystem processes in the ocean and how 
they are changing, but also to provide stakeholders, policy 
makers and environmental agencies with indicators of ocean 
health in order to take appropriate mitigation, adaptation, 
conservation, and protection measures for living marine or-
ganisms and their habitats but also for human health.

“A predicted ocean whereby society has the capacity to 
understand current and future ocean conditions, forecast 
change and impact on human wellbeing and livelihoods” is 
an expected outcome of the United Nations Decade of Ocean 
Science for Sustainable Development, 2021-2030 (Ryabinin et 
al., 2019), supported also by the Sustainable Development 
Goals 14 (Life below water), 8 (Decent work and economic 
growth), and 9 (Industry, innovation and infrastructure).

9.1.2.	 Fundamental theoretical background

9.1.2.1.	 Biogeochemical modelling

Plankton (including phytoplankton and zooplankton) are or-
ganisms which are carried by tides and currents, or do not 
swim well enough to move against them. They form the base 
of the marine ecosystem and are a central component of the 
BGC models that simulate the cycling of elements through 
seawater and plankton. 

Most models take an “NPZD” approach, simulating:

•	 Nutrients: substances which organisms require for growth.
•	 Phytoplankton: microscopic algae which obtain ener-
gy from sunlight through photosynthesis.
•	 Zooplankton: planktonic animals which obtain energy 
by eating other organisms.
•	 Detritus: dead and excreted organic matter.

Each of these is represented by one or more state variables, 
depending on the complexity of the model. Rather than con-
sidering individual organisms, state variables represent con-
centrations of elements such as nitrogen or carbon. They are 
often called tracers because they are transported and dif-
fused by ocean dynamics.

As with physical models, BGC models are discretized on a grid 
covering the region of interest and require suitable initial and 
boundary conditions for each state variable. At each grid point, 
the evolution of a state variable C is given by the equation:

(9.1)

where ∇ ∙ (CU) and DC are the advection and diffusion terms 
equivalent to those used for temperature and salinity in 
physical models (please refer to Chapter 5). ∇ is the gener-
alised derivative vector operator, t is the time, U the vector 
velocity, and DC is the parameterization of small-scale phys-
ics for the tracer. The SMS(C) stands for source-minus-sink 
terms for the tracer C and represents the BGC processes 
simulated by the model. Each 1D water column is normally 
treated independently, with lateral interactions limited to 
advection and diffusion. Most BGC models are formulated to 
conserve mass. 
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Figure 9.3.		 Schematic of a basic NPZD model considering four state variables, one for each compartment.  

Unlike the Navier-Stokes equations for physical models (Chap-
ter 5), there is no known set of laws defining biological be-
haviour. Instead, empirical relationships are used to describe 
observed processes such as growth and mortality.

The basic source-minus-sink terms usually modelled in a 
NPZD model (Figure 9.3) are:

•	 Phytoplankton growth or Primary production: the 
creation of organic matter through photosynthesis. It 
is a function of phytoplankton concentration, nutrient 
availability, and light availability. It can also be regu-
lated by temperature.
•	 Grazing: zooplankton eating phytoplankton and detritus.
•	 Mortality: death through natural causes, e.g. virus-
es, predation by higher trophic levels (fish and marine 
mammals), etc.

•	 Messy feeding: zooplankton graze inefficiently, and a 
proportion of organic matter enters the nutrient or de-
tritus pool rather than being ingested by zooplankton.
•	 Remineralisation: bacteria break down the organic 
matter in detritus, which is converted back to nutrients.
•	 Sinking: detritus sinks through the water column due 
to gravity.

In this case, the differential equations for phytoplankton (P), 
zooplankton (Z), detritus (D), and nutrients (N) are as follows:

(9.2)

where phytoplankton evolution depends on primary produc-
tion, grazing and mortality;

(9.3)

CHAPTER 9. BIOGEOCHEMICAL MODELLING 252



where zooplankton evolution depends on grazing and mortality;

 
(9.4) 

where detritus evolution depends on mortality, grazing, messy 
feeding, remineralisation and sinking;

(9.5)

where nutrients evolution depends on primary production, 
messy feeding, and remineralisation.

µP is the growth rate of phytoplankton due to photosynthe-
sis; mP

 and mz are the mortality rates of phytoplankton and 
zooplankton; GP and GD are the grazing rates of zooplankton 
on phytoplankton and detritus; αD and αN represent the effi-
ciency of the grazing; (1-αD) and (1-αN) the non-assimilated 
fractions of grazing by zooplankton that return to detritus 
and nutrients; remD is the remineralisation rate of detritus 
and wD is the sinking speed of detritus.

The exact equations used differ between models, the 
ones given above are common examples. Other process-
es are often considered as well, notably respiration, ex-
cretion, and egestion, which cause loss of organic matter. 
Of course, additional processes may be included in more 
complex models. 

The processes can be modelled using different mathematical 
forms, often with parameter values which are uncertain and 
can be tuned. While sinking and mortality rates are usually 
single parameters (linear functions), phytoplankton growth 
rate requires multiple parameters. µP is usually a function of 
nutrients, light and temperature:

(9.6)

µ P 
max

 is the maximum growth rate, f (T) is the temperature 
effect, f (I) and f (N) are the limitation terms due to light and 
nutrients. Different formulations exist for each of these terms, 
but usually NPZD-type models characterise nutrient limitation 
of phytoplankton growth rate using Michaelis-Menten kinetics:

(9.7)

K is known as the half-saturation constant for nutrient 
uptake, and N is the nutrient concentration. If nutrient is 
plentifully available, then N/ (K+N) ≈1 and phytoplankton 
growth is not limited by the nutrient.

The state variables of NPZD models represent concentrations 
of a given chemical element, often nitrogen, with other ele-
ments such as carbon derived using constant stoichiometry 

between carbon, nitrogen and phosphorus, i.e. the Redfield 
ratio of 106:16:1 (Redfield, 1934). 

More complex models include additional variables for each 
compartment. Phytoplankton can be split into PFTs, grouping 
together species which perform a similar function within the 
ecosystem (Le Quéré et al., 2005). PFTs are often based on 
organism size. It is also common to separate out diatoms, 
which form silicate shells and play an important role in the 
sinking of carbon. In models, PFTs are distinguished by dif-
fering parameters for traits such as maximum phytoplankton 
growth rates, grazing, and nutrient affinity. Zooplankton can 
also be split into functional types, again often based on size, 
with different feeding preferences. Note that the current par-
adigm neglects the fact that many plankton are mixotrophs: 
they both photosynthesize and eat other organisms (Flynn et 
al., 2013; Glibert et al., 2019).

Variable stoichiometry (elemental ratios) can also be intro-
duced. Each PFT is then described by separate state variables 
for each element, such as nitrogen, carbon, and phosphorus. 

Chla is often included into BGC models as it is the main photo-
synthetic pigment found in phytoplankton, and measurement 
of its concentration in water is used as an indicator of the phy-
toplankton biomass. Chla can be represented as a constant 
ratio to the carbon biomass, or a variable ratio depending on 
nutrient, light levels, and temperature (Geider et al., 1997).

Most models incorporate dissolved inorganic nitrogen as a 
nutrient, which includes nitrate and ammonium. Phosphate 
and iron may be modelled too, and silicate if diatoms are a 
PFT. Nutrient inputs from rivers and the atmosphere can also 
be specified. Detritus may be split into different sizes, with 
different sinking rates, and into different elements. Some 
models explicitly simulate bacteria and viruses, rather than 
just parameterising their effects.

Besides NPZD variables, models can also include other re-
lated processes, such as the oxygen and carbon cycles. The 
carbon cycle is usually represented by the state variables DIC 
and total alkalinity, the latter being the capacity of seawater 
to neutralise an acid. From these and other variables, quanti-
ties such as pH and air-sea CO2 flux can be calculated (Zeebe 
and Wolf-Gladrow, 2001).

BGC models are closely related to higher trophic level models 
or ecosystem models. The latter require the underlying bio-
geochemistry, and BGC models require at least some parame-
terisation of the ecosystem, i.e. the explicit representation of 
part of the living component of the ocean (e.g. phytoplankton, 
zooplankton) with zooplankton mortality as a closure term, 
parameterising the predation of zooplankton by higher tro-
phic levels such as fish and top predators (see Section 9.2.8).
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Adding complexity to BGC models means that less important 
processes are neglected or amalgamated, but also increases 
the uncertainties associated with approximated formulations. 
There is no consensus on optimal structure and complexity, 
which will vary depending on the purpose (Fulton et al., 2003). 
Adding extra variables also increases computational cost, 
split between the computation of transport (advection and 
diffusion) for each state variable and the computation of the 
non-linear functions relating the state variables of the BGC 
model. In an operational context, the balance between mod-
el complexity and computational costs is critical and must be 
carefully evaluated. BGC models should be as simple as possi-
ble and as complex as necessary to answer specific questions.

9.1.2.2.	Model calibration

As already mentioned, biogeochemical models are based 
on empirical relationships to describe the dynamics of bio-
logical processes. Observational data are then essential for 
tuning, adjusting or revising the formulations, i.e. making the 
model results match the observed distributions and fluxes 
of inorganic and organic quantities. Model calibration can be 
performed "by hand", i.e. by adjusting certain parameters of 
the biogeochemical models until the models show a "good" 
fit to the observed tracer fields, or by using objective optimi-

sation methods (Kriest et al., 2020). The resulting set of bio-
geochemical parameters is often closely linked to the ocean 
circulation, mixing, and ventilation derived from the physical 
model used, with its specificities and defaults. 

9.1.2.3.	Physical-Biogeochemical coupling

Ocean physics advects and diffuses BGC model variables, 
thus redistributing inorganic and organic amounts. In ad-
dition, some BGC processes depend on physical conditions 
such as temperature or salinity, particularly crucial for the 
carbon cycle. Thus, there is a very strong link between the 
physical conditions and the BGC, which makes the BGC mod-
els closely dependent on the physical models. 

Vertical motions are particularly critical to bring nutrients from 
nutrient-rich deep waters into the uppermost layer that re-
ceives the sunlight needed for photosynthesis and marine life. 
Two critical layers together regulate phytoplankton production:

•	 The mixed layer is the upper layer of the ocean that 
interacts with the atmosphere. It is assumed to be mixed 
and homogeneous through convective/turbulent pro-
cesses, generated by winds, surface heat fluxes, or pro-
cesses modifying salinity. The deeper it is, the deeper 
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Figure 9.4.	 	 Schematic representation of the interplay between mixed layer depth (yellow line) and upper-ocean 
euphotic zone (light blue area) on the initiation of phytoplankton bloom (modified from Dall'Olmo et al., 2016).

CHAPTER 9. BIOGEOCHEMICAL MODELLING 254



phytoplankton are mixed, which will take them away 
from the light required for photosynthesis. Deep mixing 
also replenishes near-surface nutrient stocks.

•	 The euphotic zone is the layer from the surface down 
to the depth at which irradiance is 1% of the surface 
irradiance. The deeper the euphotic depth, the deeper 
the layer in which photosynthesis and phytoplankton 
production can occur. It extends from a few metres in 
turbid estuaries to approximately two hundred metres 
in the open ocean. 

The mixed layer may develop within the euphotic layer (in 
stratified situations), or over a greater thickness of up to 
several hundred metres (in well-mixed situations). The inter-
play between these two critical layers controls the plankton 
exposure to sunlight and the coincident exposure to nutri-
ents, thus regulating phytoplankton production (Figure 9.4). 
Exact mechanisms are still debated. Please refer to Ford et al. 
(2018) for more details.

In turn, phytoplankton abundance may feed back to phys-
ics, by absorbing radiation in the surface layers and there-
fore affecting heat penetration into the water column (Len-
gaigne et al., 2007).

9.1.2.4.	From open ocean to coastal ecosystems

Different considerations are generally needed for open ocean 
and coastal ecosystems. In the open ocean, the seasonal cy-
cle is quite well defined and recurring (Figure 9.5). Seasonal 
increases in temperature and solar radiation drive the phyto-
plankton spring bloom. The peak persists for a few weeks to 
months until nutrient limitation and grazing cause the bloom 
to collapse. A secondary biomass peak can develop in late 
summer or autumn.

In contrast, coastal ecosystems can be very complex, sub-
ject to a succession of blooms having different origins, thus 
requiring additional model complexity. Correct specification 
of river inputs also becomes more critical. Furthermore, the 
equations in Section 9.1.2.1 are for the pelagic (water column) 
ecosystem. In shallow waters, such as shelf seas, it becomes 
important to include the benthic (seafloor) ecosystem into 
the BGC models. This requires the addition of extra variables, 
though they do not need to be advected or diffused. Finally, 
coastal waters are often turbid, and the effect of sediments 
and coloured dissolved organic matter on light and there-
fore primary production should be included. Dedicated opti-
cal models are sometimes used for this purpose (Gregg and 
Rousseaux, 2016).

9.1.2.5.	Potential predictability of ocean biogeochemistry

The potential predictability of ocean biogeochemistry varies 
considerably depending on the scales and quantities of inter-
est. A lot of variability is driven by physics, with changes in mix-
ing and stratification affecting light and nutrients and therefore 
primary production. When these physics changes can be pre-
dicted, e.g. changes in stratification with a warming climate and 
interannual variability related to phenomena such as the El 
Niño Southern Oscillation, associated large-scale changes to 
ocean biogeochemistry can also be predicted. Similarly, chang-
es to the ocean carbon cycle and acidification with increasing 
atmospheric CO2 concentrations can be predicted. When con-
sidering local regions and/or shorter time scales, both physics 
and biogeochemistry become harder to be accurately predicted.

Furthermore, various biogeochemical quantities change at 
very different rates. Phytoplankton react quickly to changes 
in light and nutrient availability and can double in concen-
tration over a day (Laws, 2013). Zooplankton will exhibit a 
slightly more lagged response to these changes. Meanwhile, 
nutrient concentrations will typically change more slowly, 
and the carbon cycle even more slowly, although surface 
concentrations (of nutrients and carbon) can change rapidly, 
for example during a storm. These different rates of change 
have implications for the scales of predictability.

For accurate predictions, it is important to initialise mod-
els using data assimilation (see Section 9.2.5). At season-
al-to-decadal time scales, predictability is dominated by 
physics, and this must be accurately initialised and simulat-
ed. Physics remains important at shorter time scales, but is 
essential to initialise nutrient concentrations correctly, as this 
will help to determine the primary productivity. For short-
range predictions, phytoplankton concentrations should be 
initialised, though the memory of the phytoplankton variables 
may be as short as a few days, given that they react to changes 
in nutrients and mixing. Accurate model formulations and pa-
rameterisations are also required, otherwise the model will 
react incorrectly to the data assimilation.

Figure 9.5.		 Seasonal cycle of phytoplankton 
relative to variations in sunlight, nutrients, and 
zooplankton (Copyright: 2004 Pearson Prentice 
Hall, Inc).

CHAPTER 9. BIOGEOCHEMICAL MODELLING 255



Green Ocean modelling for operational oceanography is built 
in the same way as its Blue equivalent. The operational suite 
follows almost the same architecture (see Figure 4.1) and in-
formation flows from marine observation data up to end-us-
er products enhancing the initial information. Each compo-
nent includes a research stage, a development stage, and an 
operational stage. This Chapter mainly focuses on the last 
stage, in which the system is in operation.

The modelling component includes the BGC model, data as-
similation, and ensemble modelling, executed for analysis 
and to forecast BGC conditions. The data include upstream 
data such as physical conditions, atmospheric forcing, exter-
nal inputs of chemical compounds provided at interfaces 
(atmosphere, land, and seafloor), observational data from 
satellites, and in-situ measurements integrated into the sys-
tems via data assimilation methods. The data are also used 
for validation tasks: the near-real time evaluation of the 
forecast accuracy and the delay mode evaluation of the 
model system. Finally, the model outputs and end-user 
products are prepared by respecting certain standards of 
format, units, names, etc. for delivery to users and archiving.

9.2.1.	 Architecture singularities

In this section, we present the main architecture singulari-
ties of OOFS dedicated to the production of ocean biogeo-

chemistry and marine ecosystems information. As most sys-
tems describing the “Green Ocean” in operation today are 
less advanced than their “Blue Ocean” equivalent, the “ide-
al” design proposed here includes some features that are 
still at the stage of research or development. Yet, they should 
be kept in mind for the construction of future systems.

9.2.1.1.	 Physical, optical, and biogeochemical components

As introduced in Section 9.1.2, the space-time evolution of the 
BGC quantities is driven by physical fields through horizontal 
and vertical advection, lateral diffusion, and vertical mixing. Ver-
tical motions are particularly important as they supply nutrients 
to the lighted upper ocean, allowing photosynthesis to occur. 

The limitation of photosynthesis by light thus requires a fine rep-
resentation of the penetration of spectral irradiance in the upper 
ocean, as it is absorbed and scattered within the water column. 
Light penetration used to be managed by very simple optical 
schemes, but it is now increasingly managed by advanced 
bio-optical modules embedded into the physical-biogeochemi-
cal model systems, to both compute photosynthetic activity and 
to make the link with key observations such as spectral irradi-
ances from ocean colour missions. The evolution of ecosystem 
variables in the trophic chain is driven by physics, optics, and 
biogeochemistry through primary production, which under-
pins the whole marine ecosystem (see Section 9.2.8).

9.2.	 
Biogeochemical forecast and multi-year systems

Figure 9.6.	 	 Schematic of a physical-biogeochemical coupling (left) and nesting (right).
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Figure 9.7.	 	 Chronology of oceanographic observation platforms to measure marine biogeochemistry (adapt-
ed from Chai et al., 2020).

The physical fields can come from simulations of the ocean 
dynamics (reanalyses, nowcasts or forecasts) produced in-
dependently by the BGC modelling suite. Nevertheless, the 
physical fields must reflect the essential dynamical proper-
ties for the biogeochemistry, such as the right mixing rate, 
the right vertical velocity statistics, and the right phasing 
with mesoscale structures and frontal positions (Berline et 
al., 2007).

Although some feedback from biology to physics may exist, 
such as self-shading (Hernandez et al., 2017) or phytoplank-
ton heat release, their effects are generally limited to moder-
ate modifications of the upper-ocean heat budget and asso-
ciated vertical structure of the thermocline. Therefore, the 
physical and BGC modelling components are usually linked 
by “one-way” coupling, resulting in successive model opera-
tions (Figure 9.6). As a result of the “one-way” approximation, 
the coupling can be implemented in “online” mode, i.e. the 
physical and biogeochemical models run simultaneously at 
each time step: the temporal update of the physical model is 
performed first, before being used for the update of the bio-
geochemical component. Alternatively, the coupling can be 

implemented in “offline” mode where the physics is comput-
ed beforehand and stored at lower frequency (e.g. each day/
week) and then used as inputs for the biological model (Ford 
et al., 2018).

Such systems are usually less expensive in terms of compu-
tational resources. However, the practicality of the “offline” 
coupling approach can be questioned with respect to vertical 
viscosity and diffusivity coefficients, which typically vary 
with short time scales (~hours) compared to the storage rate 
of “offline” physical fields (typically a few days). This can be 
an issue in an integrated perspective that includes data as-
similation. Burning questions underlying the coupling strat-
egy for assimilative systems are still the subject of long-last-
ing research efforts by the community (Fennel et al., 2019).

Regional models with lateral open boundaries also require 
values of the model state variables at boundaries. A conve-
nient way is nudging to fixed or climatological data from glob-
al reanalysis or datasets, but a more robust approach is to 
nest high-resolution regional ocean models into larger-do-
main (and usually lower-resolution) models (see Figure 9.6). 
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As for the coupling between physics and biogeochemistry, the 
coupling between configurations nested in space can be 
“one-way”, with the inner model having no influence on the 
outer model, or “two-way”, in which the inner model provides 
information to the outer model. “One-way” coupling is mainly 
used in BGC operational systems for different reasons, as it 
offers the possibility to run the BGC model either in “online” 
or “offline” mode with the physics, while the “two-way” nest-
ing requires by nature an “online” coupling between the 
physics and the BGC, making the operation of such coupled 
systems more complex and time-consuming.

For a sound representation of the biology, a specific design 
of the vertical discretization in the upper ocean is needed. 
The strong vertical gradients of the physical and biological 
variables typically require vertical spacing between horizon-
tal levels ~ 1 metre. Regarding the horizontal grid, it is not 
always required to use the same numerical grid for physics 
and for biology. A coarsening approach that preserves the 
essential features of the resolved dynamics has been imple-
mented in some systems to feed the biological equations at 
lower resolution, while saving numerical resources (Berthet 
et al., 2019; Bricaud et al., 2020). 

9.2.1.2.	Propagation of uncertainties

The forward integration of the discretized equations involved 
in the different modelling steps leads to results that are fun-
damentally uncertain. It is necessary to quantify this uncer-
tainty, both to provide the user with useful information for 
decision making and for merging the forecast with future 
observations, which are also intrinsically uncertain.

The main possible sources of uncertainty in biogeochemical/
ecosystem models are the following:

•	 initial conditions of the state variables;
•	 external data involved in the forcings, such as down-
ward radiation, cloud cover, etc.;
•	 input physical data used to constrain the evolution 
equation of the biogeochemical/ ecosystem variables, 
such as currents, temperature, vertical eddy viscosity, etc.
•	 parameters involved in the representation of optical, 
BGC and ecosystem processes;
•	 numerical schemes and numerical approximations 
(such as coarsening or offline integration);
•	 unresolved, sub-grid scale processes that may induce 
bulk effects as a result of non-linearities.

These uncertainties can be quantified heuristically or can be 
explicitly considered by introducing stochastic parameter-
izations in the model equations, as proposed by Garnier et 
al. (2016). Multiple forward integrations can then be pro-
duced to generate ensembles that provide an approximation 
of the spread of the plausible solutions. A sample of the pri-

or probability distribution of the forecast is then generated 
by the different ensemble members (Santana-Falcon et al., 
2020). As a result, the forward integration module (referred 
as Step 2 “Forecast” in Figure 4.1) should be designed in such 
a way that it can be called n times (with n = a few tens to 
hundreds) in parallel or in sequence. Please refer to Section 
9.2.4 for more details on Ensemble modelling.

9.2.1.3.	BGC Data singularities

Biogeochemical variables very often have non-Gaussian 
statistical properties. This can be explained by the nature 
of these variables (generally concentrations that repeated-
ly take values close to 0 or biomasses that can vary by sev-
eral orders of magnitude), which is related to the non-lin-
earities of the processes involved. Non-Gaussian behaviour 
requires special attention at the time of validation when 
comparing model variables to observations, using metrics 
calculated on log-transformed data or non-parametric 
metrics (please refer to Section 9.2.6 for more details).  

Figure 9.8.		 Examples of Chla ocean colour 
global multi sensor products available on the Co-
pernicus Marine Service. They are daily products 
for 1st May 2019: a) OC-CCI product; b) Coperni-
cus-GlobColour level 3 product; and c) Coper-
nicus-GlobColour “Cloud Free” (interpolated) 
product (from Garnesson et al., 2021).
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In addition, the assimilation methods applicable to large 
systems, e.g. Ensemble Kalman Filters, are typically adapted 
to Gaussian distributions: as a result, it is necessary to insert 
a so-called anamorphic transformation – a function match-
ing the quantiles of the variable distribution to those of a 
standard Gaussian – between the outputs of the ensemble 
forward integration and the observational update step. This 
can be done in different ways: by prescribing a priori a given 
transformation (e.g. log-normal or truncated Gaussian), or 
by constructing the transformation from the ensemble in-
formation as proposed by Simon and Bertino (2009 and 
2012) and Brankart et al. (2012). At the end of the analysis 
step, the inverse transformation must be applied to com-
plete the assimilation cycle and prepare a new initialization.

Another issue comes from the highly heterogeneous distri-
bution of the biogeochemical data in space and time, most of 
which coming from satellites (ocean colour) and fairly dis-
persed BGC-Argo profilers. The spatial scales captured by 
these observational data are therefore very different, requir-
ing special care within biogeochemical data assimilation sys-
tems for localization at the analysis stage. The transforma-
tion in the Fourier space can then prove beneficial to carry 
out this step, as proposed by Tissier et al. (2019). The archi-
tecture of an operational chain dedicated to biogeochemis-

try should therefore include a step to perform the observa-
tional update in a transformed space.2

9.2.2.	Input data: available sources  
and data handling

This Section provides a general description and technical in-
formation on the data used to both drive and validate a bio-
geochemical forecasting system. Observational data are re-
quired at different stages of an OOFS: 

•	 Data is first used to set-up the model configuration: 
initial and lateral conditions, physical forcing, atmo-
spheric surface forcing, and external inputs. 
•	 Data is essential for calibrating the formulations of 
the BGC processes, i.e. making the model results to 
match the observed distributions and fluxes. 
•	 Then data is used to evaluate the model product quality.
•	 Finally, observational information is incorporated into 
the numerical models using data assimilation methods 
with the objective to improve predicted model states.

2. https://marine.copernicus.eu/access-data/ocean-mon-
itoring-indicators/north-atlantic-ocean-chlorophyll-time-
series-and-trend

Figure 9.9.	 	 North Atlantic Ocean time series and trend (1997-2019) of satellite chlorophyll. Blue dots: daily 
regional average time series; green line: deseasonalized time series; blue line: linear trend (source: Copernicus 
Marine Service at 🔗2).
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9.2.2.1.	Physical conditions

Required fields are currents, temperature, salinity, vertical 
diffusivity coefficient (Kz), and MLD. They are provided by a 
physical model to the BGC model with which it is coupled in 
either “online” or “offline” mode (see Section 9.2.1 for de-
tails). Advection and diffusion routines are usually shared 
with the physical model. A list of physical-BGC coupled sys-
tems is available in Section 9.2.9.

9.2.2.2.	Observational data

Ocean-observing platforms to measure marine BGC encom-
pass ship, mooring, and remote sensing observations. A good 
overview of the evolution and diversification of platforms 
over the past century is given by Chai et al. (2020) from which 

is taken Figure 9.7. Among the traditional observing systems, 
satellites represented a revolution, providing a continuous 
spatiotemporal coverage of sea surface variables. More re-
cently, autonomous mobile platforms measure ocean vari-
ables through the water column. They cover a wide range of 
spatial and temporal scales, filling the observational gaps.

9.2.2.2.1.	Remote sensing observations

Remote sensing-derived Chla data have a good spatial cover-
age of the entire ocean in near-real time and reprocessed 
time series for global and regional mapped products. They 
are available through operational services, such as the Coper-
nicus Marine Service (🔗3; Le Traon et al., 2017). Figure 9.8 

3. https://marine.copernicus.eu/

Figure 9.10.	 Spatial coverage of chlorophyll (top left), oxygen (top right), nitrate (bottom left) and phosphate 
(bottom right), shown as the number (N) of profiles in the upper 100 m water depth in 1°x1° cells, from 1990 
to 2020. To show gaps more clearly, colour shading is from dark (low sampling) to light (high sampling), white 
colour indicates no sampling (from Jaccard et al., 2021).
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presents some Chla products and their spatial coverage. Fig-
ure 9.9 illustrates the long time series available. Remote 
sensing derived PFTs and optical properties are also starting 
to be distributed on the same portal.

9.2.2.2.2.	In-situ observations

The Copernicus Marine Service collects and distributes in-situ 
observations from a variety of platforms, including manual 
CTD-O2 measurements, BGC-Argo profiling floats, ferrybox sys-
tems, gliders and moored buoys, gathered by global systems 
such as the EuroGOOS, SeaDataNet, NODCs, and the JCOMM. Two 
types of products are provided: 1) NRT products automatically 
quality controlled within 24 hours from acquisition for forecast-
ing activities and 2) the reprocessed (or multi-year) products for 
reanalysis activities. The main biogeochemical variables avail-
able are dissolved oxygen concentration, nutrients (nitrate, sili-

cate and phosphate), Chla, fluorescence, and pH. The spatial 
distribution of all chlorophyll, oxygen, nitrate and phosphate 
samples of the reprocessed product (from 1990 to 2020) are 
shown in. Figure 9.10.

Special attention should be paid to autonomous robotic under-
water vehicles. Argo profiling floats drift freely with the currents 
and measure ocean variables through the water column, reach-
ing up to 2000 m, while gliders can be programmed to sample 
along a predetermined path, making the former more suited to 
the open ocean and the latter more suitable for observation at 
various depths in coastal and shallow oceans. After cycling verti-
cally, both floats and gliders transmit their data to orbiting satel-
lites once they have reached the surface, providing continuous 
monitoring and real-time data to operational centres.

The International Biogeochemical-Argo (BGC-Argo) program is 
revolutionising marine biogeochemistry by establishing a glob-
al, full-depth, and multidisciplinary ocean observation network, 
acquiring profiles in regions of the global ocean that previously 
were observationally sparse (Russell et al., 2014). They measure 
oxygen, Chla, nitrate, pH, suspended particles, and downwelling 
irradiance. Since their deployment in 2012, 1623 floats have ac-
quired about 250000 profiles (Figure 9.11), the major part being 
oxygen. The aim is to have 1000 active profiling floats measuring 
simultaneously the six essential variables mentioned above 
(Biogeochemical-Argo Planning Group, 2016; Chai et al., 2020). At 
the time being, 410 floats are operational around the world (Fig-
ure 9.12). An example of time series is presented in Figure 9.13. 
BGC-Argo data are publically available in near real-time after an 
automated quality control, and in scientifically quality con-
trolled form, delayed mode data, within six months of collec-
tion, via two Global Data Assembly Centers (Coriolis in France 
and US-GODAE in USA) (Argo, 2022; 🔗4). They are also available 
through the Copernicus Marine Service (🔗5).

4. https://www.seanoe.org/data/00311/42182/
5. https://marine.copernicus.eu/

Figure 9.11.	 Spatial coverage of oxygen (top), 
Chla (middle), and nitrate (bottom) from the 
start of the BGC-Argo program. 230,202 profiles of 
oxygen, 94,947 profiles of Chla, and 49,939 profiles 
of nitrate have been acquired by October 2021 
(source: T. Carval, personal communication using 
data from the Copernicus Marine Service).
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Figure 9.12.	 Location of operational BGC-Argo floats in August 2021 (🔗6).

6

6. www.ocean-ops.org

Figure 9.13.	 Time evolution of Chla (top left), oxygen (top right) and nitrate (bottom) along a BGC-Argo float 
trajectory in the North-East Atlantic.
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9.2.2.3.	Climatologies, databases, and atlases

Databases and atlases are collections of uniformly format-
ted, quality controlled, and publicly available ocean surface 
or vertical profile data. Climatologies are mapped data prod-
ucts, produced from databases and atlases, representing the 
mean annual, seasonal, or monthly large-scale characteris-
tics of the distribution of a quantity. They can be used to 
create initial and/or boundary conditions for ocean BGC 
models, evaluate numerical simulations, and corroborate 
satellite data.

The GLODAP provides a climatology (GLODAPv2.2020) of ocean 
biogeochemical variables of oxygen, phosphate, nitrate, sili-
cate, dissolved inorganic carbon, total alkalinity, and pH on a 
uniform 1° longitude/latitude grid. The product is described in 
Olsen et al. (2020) and is publicly available at 🔗7.8

The latest version of the WOA delivered in 2018 provides an 
annual, seasonal, and monthly climatology of oxygen and 
macronutrients (phosphate, silicate, and nitrate) on a 1° lon-
gitude/latitude grid (Figure 9.14). 

7. https://www.glodap.info
8. https://www.ncei.noaa.gov/products/world-ocean-atlas

It is described in Garcia et al. (2018ab) and is publicly avail-
able at 🔗8. It is based on the latest major release of the 
WOD described in Boyer et al. (2018).

The SOCAT provides surface ocean fCO₂ (fugacity of carbon 
dioxide) observations, 🔗9. The latest SOCAT (version 2020) 
has 28.2 million observations from 1957 to 2020 for the global 
oceans and coastal seas. 

The EMODnet portal provides access to temporal and spatial 
distribution of marine chemistry data in European seas, 🔗10.

9.2.2.4.	Atmospheric surface forcing

Atmospheric surface conditions drive biogeochemical quan-
tities and processes, such as photosynthesis and air-sea ex-
changes of gas elements (oxygen, carbon). Typical surface 
data inputs include wind, solar radiation, and the evapora-
tion-precipitation flux. They can be obtained from an opera-
tional weather prediction system, via the Copernicus Climate 
Change Service (🔗11).

9. https://www.socat.info/
10. https://emodnet.eu/en/chemistry
11. https://climate.copernicus.eu/

Figure 9.14.	 Nitrate, phosphate, and silicate concentrations at sea surface and dissolved oxygen concentra-
tion at 200 m depth, all in mmol m-3 (from WOA climatology).
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9.2.2.5.	 External inputs

External inputs of carbon and nutrients are provided to ma-
rine biogeochemical systems from observations or models. 
Although these inputs are currently simplified in current sys-
tems (from climatologies), the optimal solution would be to 
connect ocean operational systems with atmospheric and 
land operational systems. The link between the Copernicus 
Marine Service and the Copernicus Atmosphere and Land 
Services (respectively, 🔗12 and 🔗13) is currently discussed.

9.2.2.6.	 Units

Special attention should be paid to the units of the BGC 
quantities because there is no standardisation among the 
different scientific communities. Model data are usually ar-
chived in the units specified by the SI Units but instruments 
frequently do not measure data in SI Units, making conver-
sion necessary. For example, dissolved oxygen concentration 
in the seawater can be found in many different units (e.g. mg 
l-1, ml l-1, μmol l-1, μmol kg-1, mmol m-3, μM), with the SI 
Units being mole per cubic metre (symbol mol m-3).

It is worth noting the equivalences:

μmol l-1 = mmol m-3 =  μM

1 l = 10-3 m3 ≈ 1.025 kg

and the conversions:

μg l-1 = μmol l-1 × MW

μl l-1 = μmol l-1 × MV

g l-1 ≈ g kg-1 × 1.025

To convert a quantity in sea water from mole concentration 
(in mol) to mass (in grams), multiply by Molar weight (MW in 
g mol-1); from mole concentration (in mol) to volume fraction 
(in litre), multiply by Molar volume (MV in l mol-1); expressed 
per unit mass (in gram) to volume (in litre), multiply by den-
sity (in kg l-1). 1.025 is an approximate but general value for 
the density of seawater.

9.2.3.	Modelling component

9.2.3.1.	Numerical and discretisation choices

Marine biogeochemical models describe the cycling of es-
sential elements (e.g. C, N, O2, P, and Si) through the lower 
trophic levels, usually from bacteria up to mesozooplankton. 

12. https://atmosphere.copernicus.eu/
13. https://land.copernicus.eu/

Their complexity (i.e. number of state variables and process-
es) differs depending on the scientific question under inter-
est, the information available for their parameterization and 
implementation, and the investigated time and space scales. 
BGC models consist of a set of evolution equations (e.g. dif-
ferential equations) expressing the mass balance of each 
model component (e.g. state variable). These mass balance 
equations include local sources and sinks associated with 
biogeochemical processes (e.g. photosynthesis, respiration, 
and nitrification), trophic interactions (e.g. predation), the 
transport by physical processes in the three directions of 
space by advection (e.g. transport by the main current), and 
diffusion (i.e. unresolved processes that are parameterized 
on the model of the Fick’s law of diffusion). As for physical 
models, biogeochemical models cannot be solved analytical-
ly and require a numerical model for their integration. A nu-
merical grid has to be defined and the size of the grid cells 
will define the spatial scales that can be solved (it is usually 
assumed that the length scale of the solved processes equals 
twice the size of the grid). Given that the vertical scales of 
variations are much smaller than the horizontal ones due to 
the rapid extinction of the light field, the size of the vertical 
mesh is usually of the order of metres in the upper layer. The 
numerical scheme for time steps and time integration has to 
be carefully chosen in order to avoid generating negative 
concentrations. The choices may be identical to the physical 
model to which it is coupled, or different. Numerical and dis-
cretization techniques are described in Chapter 5 and bio-
geochemical singularities are discussed in Section 9.2.1.

Whether the processes can be resolved or not in models will 
depend on the grid resolution used to solve the numeric. Fig-
ure 9.15 shows the spatial and temporal scale of specific bio-
geochemical processes. 

Regional and global scale models are able to capture the me-
soscale signals with temporal scales of the order of a month 
and spatial scales of the order of 50-100 km. Coastal models 
have to solve the high frequency signal at daily and (sub)-me-
soscale, but at this stage they are able to solve the dynamics 
of the system at weekly to monthly scales.

9.2.3.2.	The different biogeochemical models

In marine biogeochemistry, the specificity lies mainly in the 
diversity of environments, ecosystems, and processes. The 
choice of a BGC model will thus depend on the study area 
and the topic of interest.

Models of marine biogeochemistry and of the lower trophic lev-
els in the marine food web are usually of the NPZD type (see 
Section 9.1.2 for more details), which resolve community struc-
ture by the explicit representation of a few plankton groups, in 
accordance with their function in the ecosystem. Another ap-
proach is to let the community structure emerge from a wide 
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Figure 9.15.	 Time and space overlapping scales of major ocean processes. Main processes modelled by biogeo-
chemical models are outlined in red (adapted from Dickey, 1991).

range of possibilities. For example, the DARWIN model (Follows 
et al., 2007) includes a large number (tens or hundreds) of PFTs 
whose physiological characteristics are stochastically deter-
mined (the parameters are prescribed randomly), allowing the 
fittest to emerge in the resulting ecosystem.

Some of the most used models in OOFS are summarised below:

•	 HadOCC (Palmer and Totterdell, 2001).
•	 MEDUSA (Yool et al., 2013).
•	 PISCES (Aumont et al., 2015). Its development is led by 
the Pisces Community gathering eight international re-
search institutes/laboratories. The model can be down-
loaded from the NEMO and CROCO modelling systems 
into which it is embedded (🔗14 and 🔗15).
•	 ERSEM (Baretta et al., 1995; Butenschön et al., 
2016). Its development is led by the Plymouth Marine 
Laboratory and the code is available at 🔗16.
•	 BFM (Vichi et al., 2015). Its development is led by a con-

14. http://www.nemo-ocean.eu
15. https://www.croco-ocean.org
16. https://www.pml.ac.uk/Modelling/Home

sortium of five members and the code is available at 🔗17.
•	 NORWECOM (Skogen, 1993; Skogen and Søiland, 1998). 
NORWECOM is the result of the cooperation between 
several Norwegian institutions, for more information 
see http://www.ii.uib.no/~morten/norwecom.html.
•	 ECOSMO (Daewel and Schrum, 2013) is developed by 
Hereon with contributions from the Nansen Centre and 
other collaborators, see 🔗18.
•	 ERGOM (Neumann, 2000). It was developed at IOW, 
Germany. 
•	 BAMHBI (Grégoire et al., 2008; Grégoire and Soetaert, 
2010; Capet et al., 2016).
•	 SCOBI, described in Eilola et al. (2009) and Almroth-Rosell 
et al. (2015).

Usually, these models are the result of the collaboration be-
tween different national and international research/academic 
institutes and laboratories, organised in formal or informal 
consortia. They are shared by several operators. In most cases, 
the code is available under open-source licences.

17. https://bfm-community.github.io/www.bfm-community.eu/
18. https://www.hereon.de/institutes/coastal_systems_
analysis_modeling/matter_transport_ecosystem_dynamics/
models/index.php.en
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Models have been developed to be applied to regional, 
shelf-sea, basin, or global ocean scale. The level of complex-
ity differs depending on the application (biogeochemical cy-
cling or ecological application). The models mainly differ in 
the biogeochemical cycles of major elements, the number of 
nutrients, the number of autotrophic and heterotrophic PFTs, 
the complexity in process formulation, as well as in the con-
sideration of the benthic component. See refer to Gehlen et 
al. (2015) for a detailed description of these models.

The practical ability to switch between different physical and 
biogeochemical models is desirable to compare models and 
upgrade them smoothly. This ability is offered by the FABM  
(🔗19) and it has been used in NEMO and HYCOM, among oth-
er ocean/lake models programmed in Fortran. 

9.2.3.3.	 Connections Ocean-Earth systems

Several kinds of models are used for a range of environ-
ments, but different considerations are needed for open 
ocean, regional, and coastal ocean. Moving from the open to 
the coastal ocean is often accompanied by an increase in the 
spatial resolution and complexity of the model.

Regional models of coastal ecosystems can be very complex. 
Their dynamics is essentially driven by the boundary conditions 
with the open sea and at the air-sediment-land interface. 

 

19. https://bolding-bruggeman.com/portfolio/fabm/

 
For the ocean, atmosphere, rivers, and sediments are signif-
icant sources of carbon and bioactive nutrients, such as ni-
trogen, phosphorus, iron, and silicate. Model performances 
can be hampered by the quality of these boundary condi-
tions. Coastline and topography are also important to trigger 
high-frequency physical processes. 

Connections with the surrounding systems (Figure 9.16) that 
need to be carefully considered include: 

•	 Connection with land. Rivers exchange freshwater as 
well as inorganic and organic material with the ocean. 
Coastal marine ecosystems have been subject to con-
siderable modification in recent decades. The consider-
able nutrient load in river discharges is due to human 
activities on the land (e.g. agriculture, deforestation, 
waste discharge, etc.). Such inputs are critical for coast-
al ecosystem studies.

•	 Connection with the atmosphere. Atmospheric trans-
port and deposition are a source of chemical com-
pounds (e.g. carbon dioxide, nitrogen, oxygen, iron, 
and phosphorus) to the ocean, affecting marine bio-
geochemistry (e.g. source of nutrients, influence on pH, 
etc.) (Krishnamurthy et al., 2010). 

Figure 9.16.	 Connections with interfaces (modified from Warner et al., 2010).
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•	 Connection with the seafloor. Exchanges between the 
sediments and the ocean can be represented in a very 
basic way: they consist of the deposition of non-living 
organic material, resuspension, and release of inorgan-
ic nutrients from the sediments. But for a more robust 
approach it should be used an additional module rep-
resenting (semi-) explicitly the diagenesis, benthic eco-
system, as well as bioturbation, diffusion, bio-irrigation 
effects into the upper sediments and sediment trans-
port. A coupling with the waves is sometimes realised, 
e.g. using climatology. 

•	 Connection with the open ocean. Open ocean and 
coastal ecosystems are intimately linked as they ex-
change mass, fluxes, and materials with each other. The 
best possible knowledge of open boundary conditions 
is essential for coastal modelling.

•	 The sea ice algae contribute between 4 and 26% of the 
primary production in the sea ice covered regions of the 
Arctic Ocean (Spindler, 1994; Gradinger, 2009; Dupont, 2012).

Connections listed above are not always optimally imple-
mented in current OOFS. Rivers, atmosphere, and sediment 
exchanges are often introduced in a simplified way using cli-
matologies or simplified exchanges. More refined interac-
tions, including additional numerical modules or interannual 
observational data, are currently developing, and connec-
tions with surrounding systems should be considered for the 
construction of future systems.

9.2.4.	Ensemble modelling

A forecasting system is literally designed to give an expectation 
of future conditions, having some knowledge of present condi-
tions. The expectation is also a judiciously named statistic de-
fined by the mean of all possible outcomes; for example, the 
expected primary production at a given location next week 
(time t1) can be expressed as the mean of all possible values at 
the same time and location <x(t1)> = ∫x(t1)dx. If we make next 
week’s primary production a function of today’s primary pro-
duction x1=f(x0), the function f() implicitly includes all the other 
variables than primary production at present time such as nu-
trients, solar activity, currents, etc. We obtain a new expression 
for the expected forecast value (using the notation <.> for the 
expected value) <x(t1)> = ∫f(x(t0))dx. The function f() is unfortu-
nately not a linear function because it represents the Michae-
lis-Menten equations (see Section 9.1.2.1), which after time inte-
gration become exponentials: if the concentration of plankton 
doubles today, you may expect a lot more than twice the plank-
ton next week in a period of multiplicative growth. This means 
that one cannot swap the above integral and the f() function, 
even if x1 = f(x0) is true, <x1>=f(<x0>) is generally false and will 
ineluctably generate a biased expectation: too high or too low 
depending on the convexity of the f() function.

One general workaround for this problem is the use of an 
ensemble of simulations. Assuming that only a finite num-
ber of N possible outcomes is available, <x(t1)> becomes 
an arithmetic average instead of an integral: <x(t1)> ≅ 1/N 
Σ(XN(T1)), with xn being a member of the ensemble: of the N 
possible outcomes, which are assumed independent from 
each other and identically distributed) If samples are like 
this, the arithmetic average will converge to the integral as 
N tends to infinity. 

But why should one consider different possible outcomes 
when there is only one reality? The point is to manage uncer-
tainties, which have more diverse origins in biogeochemical 
modelling than in physical or wave models, in particular the 
dependence on ocean physics is strong. Among the input data 
sources listed in Section 9.2.2, the following bear uncertainties 
that have an impact on biogeochemical model results:

•	 The seasonal restratification is critical. A too shal-
low mixed layer will confine the organisms near the 
surface and expose them to stronger lights than they 
should and exaggerate the bloom dynamics. A too shal-
low mixed layer will warm up too much and make the 
growth conditions artificially favourable. A late shoaling 
of the mixed layer in spring would lead to a delayed 
bloom in the simulation, leading to strong errors in sur-
face Chla when comparing with observations. 

•	 A good representation of winter mixing is also a de-
sirable feature of the physical model, as it brings deep 
nutrients closer to the surface and makes them avail-
able for primary production.

•	 The ocean temperature influences the growth of mi-
croorganisms, so the simulated temperature should 
be accurate.

•	 The transport of nutrients from the rivers to the open 
ocean by ocean currents, or of any biological material 
from one oceanic region to another, requires accurate 
current simulations. 

•	 The availability of light is fundamental for the ocean 
ecosystem. The amount of light reaching the surface of 
the ocean (i.e. how much light has been attenuated by the 
atmosphere, the clouds, the water, or sea ice) is uncertain. 

•	 The initial conditions of the biogeochemical model 
are often based on very scarce climatologies of nutri-
ents, some erroneous values may remain in the model 
during very long simulations.

•	 Nutrient inputs from rivers and atmospheric deposi-
tion are highly uncertain as well.
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All the above are extrinsic source of errors, which can be 
accounted for by randomly perturbing various inputs of the 
biogeochemical model: perturbations of the downwelling 
shortwave radiations would account for uncertainties in light 
conditions, an ensemble of physical model outputs would 
account as well for the errors in the physical variables if the 
model is coupled offline. In the case of “online” coupling, the 
mixed layer depths can also be changed by adding perturba-
tions to the surface winds and surface heat fluxes. There are 
various ways of generating random perturbations in 2 or 3 
dimensions: a spectral method has been used in Natvik and 
Evensen (2003) and following works, but one could alterna-
tively use an atmospheric ensemble prediction system or an 
empirical mode decomposition of atmospheric reanalysis 
data. The goal is to generate an ensemble of simulations, 
whose members differ slightly from each other because of 
the random perturbations they have received as input. 

Intrinsic sources of errors have also been mentioned in Sec-
tion 9.2.1. Among them, the BGC model parameters cannot be 
known with much certainty and can also be randomised. To 
do this, one needs to imagine their probability distribution, 
including their minimum and maximum admitted values. The 
random parameters may be fixed global values or values 
varying continuously in space (Simon et al., 2015) or discrete-
ly, according to designated provinces (the Longhurst provinc-
es in Doron et al., 2011). Time-varying parameters also make 
sense since they may reflect neglected processes like popu-
lation shifts. To this effect, an auto-regressive process is rec-
ommended in Garnier et al. (2016). 

Other intrinsic sources of errors can be difficult to control, for 
example the noise caused by numerical advection schemes of 
the model or other model biases. If these are not too severe, it 
is desirable to emulate these uncontrollable errors by exag-
gerating the amplitude of other errors that can be controlled, 

Figure 9.17.	 Scatter plots illustrating second-order statistics from various types of ensembles of size 100. a) 
two independent random Gaussian vectors x and y. b) their exponentials. c) same as (a) but adding one outlier 
at (10,10). d) mixture of independent Gaussian vectors, with an offset of 10. The correlations between the two 
variables are indicated in the legend. 
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e.g. increasing the level of noise in the wind forcing (extrinsic 
error) to compensate for a bias in the model mixing scheme 
(intrinsic). The preferred action, however, should be to correct 
the biases at their origin, if this is possible.

It is interesting to keep track of the perturbations applied, so 
that the differences between ensemble members can be ex-
plained by the sensitivity to the input parameters. A con-
trario, Garnier et al. (2016) also directly perturb the concentra-
tions of biogeochemical tracers, in which case the differences 
between ensemble members can no longer be attributed to 
input parameters alone.

An ensemble of simulations is thus a way to obtain unbiased 
expectations, defined as a first-order statistical moment, but 
it also provides other higher order statistics as well. One sta-
tistic that is critical for data assimilation is the variance-co-
variance matrix, a second-order statistic. In particular, the 
statistics based on an ensemble can provide all empirical 
cross-covariances between observations and unobserved 
model variables, which are an essential ingredient of all data 
assimilation methods (Carrassi et al., 2018).

However, the variance and covariance estimated from en-
sembles are sensitive to outliers and may be wrongly esti-
mated in case of ill-behaved ensembles. This is illustrated on 
Figure 9.17 with a synthetic example. Figure 9.17a shows the 
scatterplot of two independent Gaussian variables, x and y, 
that display a low correlation, as expected. The exponential 
of these values in Figure 9.17b shows a negative relationship 
due to the exponential stretching of randomly high values, 
which is not desirable neither for interpretation nor for as-
similation. Figure 9.17c illustrates that the correlation can be 
very sensitive to the introduction of a single outlier. Figure 
9.17d shows that a clustered ensemble can make the correla-
tion artificially high, essentially making two hundred mem-
bers equivalent to a two-members ensemble only. 

9.2.5.	Data assimilation systems

The assimilation of biogeochemical data into marine models 
aims at estimating the “true” value of biogeochemical quanti-
ties in real ocean ecosystems. These quantities are either key 
“states” of the ocean (e.g. the phytoplankton biomass) or “pa-
rameters” characterising the functioning of the ecosystem (e.g. 
the maximum phytoplankton growth rate). They are estimated 
by merging model guesses with field observations (e.g. model 
predictions and satellite observations of the phytoplankton 
biomass). Such merging weights the errors of both the model 
and the observation, looking for the “true” value that (ideally) 
lies in their proximity. Operational oceanography aims at esti-
mating these “true” biogeochemical quantities to evaluate 
trends of ocean biogeochemistry in the past (in ocean biogeo-
chemistry reanalysis), or to set initial values for biogeochemi-
cal model prediction in future forecasts.

The theory and methods behind data assimilation are described 
thoroughly in Chapter 4, while the biogeochemical model com-
ponents have been described in the previous sections of this 
chapter. The following section provides a synthesis on how these 
ingredients can be combined in modern operational biogeo-
chemical systems. Comprehensive reviews of the subject were 
published recently by Fennel et al. (2019) and Ford et al. (2018).

9.2.5.1.	Biogeochemical state and parameter estimation

Most of the modern BGC OOFS apply DA to improve model sim-
ulations of biogeochemical state variables rather than biogeo-
chemical parameters (Fennel et al, 2019). The main reason for 
this bias is the straighter link between model state variables 
and ecosystem indicators that interest end-users in the policy, 
management, and blue growth sectors. For example, the MFCs 
of the Copernicus Marine Service provide assimilative reanal-
ysis and forecasts of nutrients, phytoplankton biomass and 
oxygen concentrations (linked to coastal productivity and eu-
trophication), and water acidity (pH, linked to ocean acidifica-
tion and climate change). All these state variables are linked 
to the Sustainable Development Goal 14 (Life below water) 
and are targets of marine policy (e.g. the European Union Ma-
rine Strategy Framework Directive).

However, the variables targeted by BGC DA systems are not 
necessarily assimilated into the model. In fact, most of the 
above-mentioned centres assimilate ocean colour chlorophyll 
only, as a proxy of phytoplankton biomass, and none of them 
assimilates pH. It is assumed that a non-assimilated variable 
can be corrected towards its true value since it is linked to the 
assimilated variable, e.g. pH is improved through its relation to 
the phytoplankton biomass via photosynthesis/respiration 
that modify dissolved inorganic carbon (DIC) concentration 
and alkalinity in the water column, and thus pCO2 and pH. 
These corrections of non-assimilated variables can happen 
directly in the assimilative analysis step when using multivar-
iate assimilation methods (Ciavatta et al., 2011). They can also 
happen indirectly during the model simulation of the ecosys-
tem processes: in principle, an improved estimation of the 
phytoplankton biomass should quantify better the air-sea CO2 
fluxes and hence their impact on pH. However, the improve-
ment of non-assimilated variables is a strong assumption that 
needs to be thoroughly verified via comparison with indepen-
dent datasets (see Section 9.2.6).

Some operational centres use BGC DA to estimate biogeo-
chemical model parameters, on their own or concurrently 
with the model state variables (e.g. in a multivariate analysis 
configuration). For example, the Arctic MFC estimates rates of 
phytoplankton growth and mortality, and this improves the 
simulation of the phytoplankton biomass that is a target 
variable of the operational system (Simon et al., 2015). The 
parameters can be estimated as variables in time and space, 
to somehow represent the variability of the real system 
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which cannot be formulated in the mechanistic equations of 
the model. For example, the variability of the phytoplankton 
species that are represented in biogeochemical models are 
often forced into few functional groups. In practice, the spa-
tial-temporal variability of a given biogeochemical parame-
ter is often represented as a random variable, with predefined 
statistical distribution. Its fluctuations are computed through 
the minimization of a cost-function between model predic-
tion and field observations of a state variable, which is linked 
to the parameter and assimilated into the model. BGC DA for 
parameter estimation has an enormous potential to improve 
our understanding of marine ecosystems, their model repre-
sentation, and the operational prediction of target variables. 
However, it is also challenging, mainly due to the scarcity of 
data to define realistic statistical distributions for the pa-
rameter variability and assess the reliability of the estimated 
parameter fluctuations. Schartau et al. (2017) provided an 
excellent review of these opportunities and challenges.

9.2.5.2.	 Assimilated observational products

Most of the modern BGC OOFS assimilate ocean colour Chla 
into their model systems (Fennel et al., 2019). That is because 
this satellite product: i) quantifies the biomass of a central 
component of biogeochemical models (phytoplankton); ii) 
provides data that are generally synoptic (~100 km), high res-
olution (~100 m), and frequent (~daily); and iii) has a timely 
and free access (e.g. through the Copernicus Marine Service; 
🔗20). A thorough discussion on the use of ocean colour in 
biogeochemical modelling and assimilation is provided in 
the report of the IOCCG (IOCCG, 2020). Here it is worth men-
tioning that, after the seminal assimilation of ocean colour 
by Ishizaka (1990), biogeochemical reanalyses were produced 
by assimilating ocean-colour total Chla in the global ocean 
(Nerger and Gregg, 2008), in an ocean basin (Fontana et al., 
2013), and in coastal and shelf-seas ecosystems (Ciavatta et 
al., 2016). More recent contributions include the decadal 
global ocean ecosystem reanalyses by Ford and Barciela 
(2017), obtained by assimilating different ocean colour prod-
ucts for 1997 to 2012, and the one by Gregg and Rousseaux 
(2019), who estimated global trends of primary production by 
assimilating ocean colour for 1998-2015. Besides the well-es-
tablished assimilation of total Chla from ocean-colour (e.g. 
Hu et al., 2012), innovative applications have assimilated sur-
face ocean colour products for: spectral diffuse attenuation 
coefficients (Ciavatta et al., 2014), size-fractionated Chla and 
POC (Xiao and Friedrichs, 2014), remote sensing reflectance 
(Jones et al., 2016) and both phytoplankton functional type 
Chla and spectral absorption (Ciavatta et al., 2018 and 2019; 
Skakala et al., 2018 and 2020; Pradhan et al., 2020). Surface 
data of partial pressure of CO2 (pCO2) from ships of opportu-
nity were used in the reanalysis of air-sea CO2 fluxes in the 
global ocean (While et al., 2012). 

20. https://marine.copernicus.eu/

Biogeochemical data are sparse for the ocean interior, but 
they can be useful to constrain vertical gradients that are 
extremely important in the functioning of marine ecosys-
tems. For example, biogeochemical simulations were im-
proved by assimilating vertical observations of nutrients, 
oxygen, and pCO2 data at fixed stations (Allen et al., 2003; 
Torres et al., 2006; Gharamti et al., 2017). The increasing num-
ber of autonomous underwater vehicles and floats observing 
biogeochemistry in the global ocean is an opportunity for the 
development of operational oceanography (see also Section 
9.2.2). The assimilation of such data in the water column can 
complement the assimilation of ocean colour at the surface of 
the ocean. For example, glider data of Chla and POC were as-
similated by Kaufman (2017), while Skakala et al. (2021a) assim-
ilated glider Chla and oxygen data along with ocean colour data 
in an operational model of the European North West Shelf 
Seas. Recently, the assimilation of BGC-Argo float data led to 
improvements in the simulation of subsurface biogeochemis-
try in regional seas (Verdy and Mazloff, 2017; Wang et al., 2020), 
as well as in the global ocean (Carroll et al., 2020). OSSE analy-
ses have shown the potential of improving the ocean biogeo-
chemical simulations by combining the assimilation of the 
planned 1000 BGC-Argo fleet with ocean colour assimilation, 
with both variational data assimilation methods (Ford, 2021) 
and stochastic ensemble approaches (Germineaud et al., 2019). 
The Mediterranean MFC pioneered the assimilation of the 
BGC-Argo float for operational oceanography (Cossarini et al., 
2019). This application is demonstrating remarkable advantag-
es for the prediction of the subsurface phytoplankton dynam-
ics and biogeochemistry, with respect to the assimilation of 
ocean colour alone. It also pointed out the current main chal-
lenges in using the BGC-Argo float data operationally: i) the 
availability of quality-controlled data in near-real time; ii) the 
relatively low number of floats available currently, which im-
plies that the impact of their assimilation is spatially con-
strained; and iii) potential biases between the assimilated float 
and satellite data (e.g. the Chla concentrations derived for re-
mote sensitive reflectance and in-situ fluorescence).

9.2.5.3.	 Biogeochemical data assimilation methods

The general theory and application of data assimilation meth-
ods were presented in Chapter 5. For the assimilation of bio-
geochemical data, current operational systems are using two 
methods (Fennel et al., 2019; Moore et al., 2019):

a.	Ensemble methods, which use an ensemble of ocean 
model simulations or states to represent the evolution 
of the physical and biogeochemical state variables and 
their uncertainty.

b.	Variational methods, which correct the model simu-
lation towards the observation by minimising the dif-
ferences between the observation and the model esti-
mate of the variable.
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Hybrid ensemble/variational assimilation methods have been 
applied successfully with physical ocean models (e.g., Storto 
et al., 2018) and are currently being developed for the assimi-
lation of biogeochemical data in operational systems of the 
Copernicus Marine Service (EU H2020 SEAMLESS project: 🔗21). 

There is no “best” method for the assimilation of biogeo-
chemical data. The choice depends mainly on: i) the target 
variable (or parameter) of the assimilative simulation; ii) 
the data being assimilated; and iii) the computational re-
sources, which can become a major issue when using bio-
geochemical models with a large number of variables. For 
example, an ensemble method might be preferable if the 
target variable (e.g. nitrate) is different from the assimilat-
ed variable (e.g. ocean colour Chla) because one can exploit 
multivariate analyses that take the dynamical model error 
covariances into account. If the number of CPUs is a con-
cern, efficient variational methods might be the best 
choice, if adequate information about the model error co-
variances is available.

As far as ensemble methods are concerned, since the intro-
duction of the original EnKF (Evensen, 1994), different flavours 
of the filter have been developed (Vetra-Carvalho et al., 2018) 
and applied with operational biogeochemical systems (Fennel 
et al., 2019). For example, both the reanalysis system of the 
Arctic Ocean (Simon et al., 2015) and the operational system of 
the Great Barrier Reef (Jones et al., 2016) use the DEnKF (Sakov 
and Oke, 2008). In the Baltic MFC, work is in progress to apply 
the local ESTKF (Nerger et al., 2012), while the Global MFC is 
based on the SEEK (Pham et al., 1998). However, the propaga-
tion of an ensemble of model states implies a high computa-
tional cost. To ensure that the EnKFs perform adequately with 
affordable ensemble sizes (i.e. between 10 and 200), practical 
adaptations like “localization” have been adopted (Houteka-
mer and Mitchell, 1998). Localization approaches correct the 
model simulation towards the observation just around the 
point where the observation was taken. “How much around” 
(i.e. the localization scale) depends also on the spatial vari-
ability of the variable that is observed.

Examples of variational methods for biogeochemistry used 
by some operational centres include: the 3D-Variational as-
similative system for the European North West Shelf Seas 
(Skakala et al., 2018) using NEMOVar (Mogensen et al., 2009; 
Waters et al., 2015) and for the Mediterranean Sea using 
3DVarBio (Teruzzi et al., 2014 and 2019); the 4D-Variational 
system of the CCS (Song et al., 2016). In all the above cases, 
the assimilated variable is ocean colour Chla concentrations, 
but a limited number of other model variables are also up-
dated by means of functional links such as background Ch-
la-to-nutrients ratios of the phytoplankton cells.

21. https://seamlessproject.org/

A particular issue for biogeochemical data assimilation meth-
ods is the non-Gaussianity of the distributions of the biogeo-
chemical variables (Campbell, 1995), which is related to the 
non-linearity of the ecosystem processes. In fact, most of the 
traditional methods assume that these distributions are 
Gaussian. The use of logarithm of the concentrations, in par-
ticular for Chla assimilation (Nerger and Gregg, 2007) and 
Gaussian anamorphosis (Bertino et al., 2003), has been 
demonstrated to handle the issue by bringing distributions 
closer to Gaussian before the assimilation of the data. This 
approach is currently exploited in operational systems of the 
Copernicus Marine Service, e.g. in the centres for the Europe-
an North West Shelf Seas, Arctic and Global oceans (Simon et 
al., 2015; Skakala et al., 2018; Lamouroux et al., in prep.).

9.2.5.4.	 Current challenges and opportunities

State-of-the-art operational centres are using BGC DA to pro-
vide better model output products to their users. It is expect-
ed that this use will expand further in the future thanks to 
current research and developments that are addressing the 
BGC DA challenges and opportunities described below (see 
also Fennel et al., 2019, and the EU H2020 SEAMLESS project  
(🔗22) specifically dedicated to the advancement of opera-
tional biogeochemical data assimilation systems).

Before applying any BGC DA method, the physical-biogeochem-
ical models at hands need to be improved as much as possible, 
e.g. through implementation of the most relevant processes, 
improved parameterizations, corroboration of equations, and 
simulation by using laboratory and field data. In fact, biogeo-
chemical data assimilation cannot fix (and actually might dete-
riorate) any systematic flaw of the applied ecosystem models 
(Ciavatta et al., 2011).

It is expected that the integrated assimilation of data from 
the expanding fleets of in-situ autonomous observing sys-
tems (e.g. BGC-Argo floats in the open ocean and gliders in 
shelf-seas and coastal areas), along with the traditional sur-
face ocean colour data, will make possible to constrain better 
a larger number of model variables and parameters of opera-
tional models (Cossarini et al., 2019; Skakala et al., 2021a).

In current applications, the assimilation of physical data into 
ecosystem models can cause the deterioration of the bio-
geochemical simulations due to the breaking of physical bal-
ances and of their consistency with the biogeochemical 
fields (Anderson et al., 2000). In models of the equatorial 
ocean, the assimilation of temperature and salinity profiles, 
or sea surface height, can perturb the balance between pres-
sure gradients and the wind stress, generating unobserved 
currents and spurious vertical velocities (Waters et al., 2017; 
Park et al., 2018). In turn, this can result in unrealistic upwell-

22. www.seamlessproject.org

CHAPTER 9. BIOGEOCHEMICAL MODELLING 271

https://seamlessproject.org/
https://seamlessproject.org/
http://www.seamlessproject.org
http://www.seamlessproject.org


ing of nutrients and excessive recreation of the water col-
umn, deteriorating biogeochemical model products (e.g. ox-
ygen and primary production). The combined assimilation of 
physical and biogeochemical data is a promising approach to 
address the above issue, and preserve the consistency be-
tween the physical and biogeochemical simulations (Ander-
son et al., 2000; Ourmières et al., 2009; Song et al., 2016; Yu et 
al., 2018). Using bio-optical modules, which provide feedback 
from biology to ocean physics in “two-way” coupling interac-
tions, models are expected to preserve even better such con-
sistency, in both simulation and assimilation steps of opera-
tional systems (Skakala et al., 2021b). The opportunity for the 
combined assimilation of physical and biogeochemical data 
is increasing along with the growing number of BGC-Argo floats 
and gliders mounting multivariate sensors in the ocean (Ska-
kala et al., 2020).

The steady expansion of computing capability will facilitate 
the use of ensemble methods (including hybrid ensem-
ble-variational methods) to better represent the dynamics of 
the biogeochemical model errors. Nevertheless, this evolu-
tion should be accompanied by the use of new stochastic 
ensemble generation methods that can represent the actual 
model uncertainty (Santana-Falcon et al., 2020), and the 
careful consideration of potential non-linearity/non-Gaussi-
anity issues that can weaken the applicability of traditional 
data assimilation methods. To address these issues, new DA 
methods such as particle filters (van Leeuwen, 2010) have 
been applied to coupled physical-biogeochemical models 
(Mattern et al., 2013) and might be used in operational sys-
tems in the future.

Finally, Artificial Intelligence/Machine Learning methods 
have supported data assimilation with geophysical models 
and will likely become relevant components of future oper-
ational biogeochemical data assimilation systems (Mattern 
et al., 2012).

9.2.6.	Validation strategies 

The validation methodology is built upon four classes of met-
rics that have been defined by the GODAE/OceanPredict com-
munity (Figure 4.30) to monitor the quality of ocean analyses 
and forecasts in physics (Section 5.7) and are used and sup-
ported by the broader biogeochemical community. These met-
rics gather a complete range of statistics and comparisons in 
space and time to properly assess the consistency, represen-
tativeness, accuracy, performance, and robustness of ocean 
model outputs. They are classified as follows (for a more de-
tailed description see Hernandez et al., 2009 and Chapter 4):

•	 Class 1: metrics aim to provide a general overview, 
they are typically spatial maps or vertical profiles.
•	 Class 2: metrics correspond to virtual moorings or 
sections of the model domain.

•	 Class 3: metrics are derived quantities, such as in-
tegrated quantities.
•	 Class 4: metrics are model-observation match-ups 
products.

Based on this methodology, the validation strategy of bio-
geochemical operational systems consists of two phases: i) 
the near-real time evaluation of the forecast accuracy; and ii) 
the delay mode evaluation of the model system. 

9.2.6.1.	Near-real time evaluation

The NRT validation aims to provide information about the qual-
ity of the forecasts and relies on the availability of NRT observa-
tions (e.g. data from satellite and from autonomous underwater 
sensors such as BGC-Argo floats, BGC-gliders, and moorings 
equipped with biogeochemical sensors). A validation is defined 
as semi-independent (independent) when the observations are 
(not) assimilated in a sequence of analysis and forecast cycles. 
In fact, an observation from a continuously recording sensor, 
even if not yet assimilated, shares some level of correlation with 
already assimilated observations from the same sensor.

The forecast validation is commonly based on temporal and 
spatial match-ups of forecast model outputs and observa-
tions (i.e. GODAE Class 4 metrics), and on the computation of 
statistical skill metrics such as average difference (also re-
ferred to as average misfit or bias), average absolute differ-
ence, RMS Difference (RMSD), correlation index, and model 
efficiency (Stow et al., 2009). Skillfulness of forecasts can be 
compared in terms of persistence (i.e. comparison with pre-
vious day forecast) or with skill performance against a refer-
ence climatology. Skill statistics are often reported for vari-
ous forecast lengths (i.e. number of days in the future). 

Two examples are presented in the following figures. Figure 
9.18 shows model analysis, six days of forecast and compare 
surface Chla model estimates to satellite observations for 
the European North West Shelf Seas system. Successive daily 
forecast values quickly diverge from the satellite product 
during spring and summer months, highlighting the strong 
effect of data assimilation during the production period. 
During winter, the satellite coverage decreases and the ocean 
colour error increases, inducing a negative forecast bias.

Figure 9.19 shows statistics for 1st and 6th forecast day in the 
Arctic Ocean. The onset of the spring bloom in the model is 
significantly delayed, but from the middle of May onwards, 
the model results are close to the observations. The quality 
barely changes as the length of the forecast period increas-
es, except during the spring bloom (the first weeks of the 
time series) in which the bias is significantly smaller for a 
forecast range of one day, suggesting that, at this stage, the 
model is unable to support increased concentrations after 
the assimilation events.
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Figure 9.18.	 Time series of surface Chla concentration for European North West Shelf Seas average. Day 0 
is the analysis day, with assimilation of satellite Chla, and days 1-6 are forecast days. Satellite ocean colour 
values are shown in red for comparison and error in the pink shaded area. The number of grid point matchups 
is shown in orange (from McEwan et al., 2021).

Figure 9.19.	 Time series for bias and root mean 
square (RMS) differences between the Arctic 
Ocean model system and ocean colour satel-
lite for 1st (top) and 6th (bottom) forecast day. 
Statistics are given for the various regions, log10 
transformation has been applied (from Melsom 
and Yumruktepe, 2021).

A different class of metrics can be used to evaluate the ca-
pacity of the forecast system to reproduce specific events, 
such as algal blooms. In this case, the skill metrics are based 
on a binary discriminator test with a threshold (i.e. greater or 
lower than a given value of Chla concentration) and a yes/no 
decision. For example, the ROC (Brown and Davis, 2006) com-
pares two independent information sets (i.e. forecast and 
observation) with respect to a threshold value. For each cou-
ple of yes/no decisions there are four possible outcomes, 
either correctly positive or correctly negative, and two model 
failures for incorrectly positive and incorrectly negative. Re-
sults of such metrics are plotted in contingent tables (Stow 
et al., 2009).

An example of the use of the ROC to characterise Chla in 
terms of events is presented in Figure 9.20, using the Medi-
terranean Sea system. The threshold is defined as the 75th 
percentile of surface concentration and identifies surface 
bloom occurrence.

Since biogeochemical variables are often not Gaussian dis-
tributed (e.g. surface Chla distribution resembles a log-nor-
mal density distribution), forecast skill performance metrics 
can be computed on log-transformed data or using non-para-
metric statistics, for example median of the misfit (i.e. model 
minus observation) instead of bias, interquartile range of the 
misfits instead of RMSD, and Spearman correlation instead 
of Pearson one. However, while data transformation (such as 
the log-transformation) preserves the statistical robustness 
of metrics, it results in metric values that may be difficult to 
understand by users, thus reducing the benefit of the valida-
tion information (Hernandez et al., 2009).
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Figure 9.20.	 Time series of surface Chla concentration for European North West Shelf Seas average. Day 0 
is the analysis day, with assimilation of satellite Chla, and days 1-6 are forecast days. Satellite ocean colour 
values are shown in red for comparison and error in the pink shaded area. The number of grid point matchups 
is shown in orange (from McEwan et al., 2021).

Real time skill statistics are reported in web pages which are 
continuously updated (e.g. the validation dashboard of the Co-
pernicus Marine Service: 🔗23). Indeed, time series of the vali-
dation metrics monitor the quality of the operational biogeo-
chemical system and alert for quality degradation of the 
model outputs. Possible deviation from the nominal quality of 
the forecast products, which is specified in the delay mode 
validation, might be due to model failure to capture specific 
events, degradation of upstream input data (e.g. assimilated 
observations), model internal biases, but also to the day-to-
day fluctuation in the number of available observations.

9.2.6.2.	 Delay mode evaluation

The DM validation conveys a more comprehensive and de-
tailed evaluation of the model capability to reproduce the 
spatial and temporal scales of variability of marine biogeo-
chemistry. DM validation assesses the reliability of the mod-
el results considering the user needs and requirements, 
measures the strengths and weaknesses of the model sys-
tem for future developments, and defines the nominal qual-
ity level to which the forecast skill performance can be com-
pared (Hernandez et al., 2018). 

9.2.6.2.1.	Common graphical representations

Results of the model performances assessment are generally 
provided in a variety of graphical representations that can be 
complementary each other, most common representations are:

23. https://pqd.mercator-ocean.fr/

•	 Spatial maps represent the spatial distribution of a 
given variable and highlight the model's ability to re-
produce global patterns, spatial gradients, and basin 
inter-difference. The bias and RMSD maps between pre-
dicted and observed values identify the regions of high 
and low model uncertainty. 

•	 Scatter plots compare the predicted values with the 
observed values in the form of a collection of pair-val-
ues (i.e. points in a model vs observation graph). If the 
points are coloured, one additional information can be 
displayed. Scatterplots are useful to identify relation-
ships between the predicted and observed values. 

•	 Vertical profiles compare the vertical structure of the 
predicted values with the observed values: surface val-
ues, vertical gradient, and deep content. The shape of 
the profiles gives indications of the physical and bio-
geochemical dynamics at work.

•	 Time series graphs represent the evolution of predict-
ed values with the observed values as a function of time. 
Such representation allows analysis if temporal dynam-
ics (such as seasonal variability, interannual variability or 
trends) are captured by the model. 

•	 Hovmöller diagrams are latitude/longitude/depth ver-
sus time diagrams displaying the evolution of a variable. 
They are more powerful than the time series graphs be-
cause they offer an additional dimension, allowing to 
study how models reproduce spatial or vertical dynamics 
over time.
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•	 Taylor diagrams display simultaneously information 
on model-observations skill for three metrics (Taylor, 
2001): 1) the Pearson correlation coefficient, 2) the RMSD, 
and 3) the SD. RMSD and SD are usually normalised 
(RMSD and the model SD are divided by the SD of the 
observations) to represent all metrics with different 
units into a single diagram (normalised Taylor diagram). 
The Pearson correlation coefficient between the model 
and the observations is given by the azimuthal position. 
The normalised SD is proportional to the radial distance 
from the origin. The normalised RMSD is proportional to 
the distance from the reference point. The observational 
reference is indicated along the x-axis and corresponds 
to the normalised SD and correlation equal to 1. Such di-
agrams are used to compare different model versions or 
to summarise the model performance for different vari-
ables in a single and compact diagram (Jolliff et al., 2009).

9.2.6.2.2.	Evaluation of different system versions

In the frame of the continuous improvement principle, any 
upgraded and novel version of an operational biogeochemi-
cal system should show advancements with respect to the 
previous one in terms of model characteristics (e.g. addition 

of new modelled variables and processes) and quality of the 
results. Updates of model formulations and upstream input 
data contribute to reduce the system uncertainty with re-
spect to a standard skill performance framework allowing 
versioning comparison. Figures 9.21 and 9.22 show how met-
rics can be used to compare different versions of a system.

Figure 9.21 compares daily surface Chla for two model versions 
of the European North West Shelf Seas system using regional-
ly-averaged time series (GODAE Class 4 metrics). The new 
product (V11 in Figure 9.21) is constrained by data assimilation 
while the previous product (V10 in Figure 9.21) was not. The 
new version shows a better match with satellites during the 
growing season, with lower summer peak and earlier spring 
bloom, although there are differences among regions. 

In Figure 9.22, the Taylor diagram summarises the quality im-
provement for different system versions of the Irish-Bis-
cay-Iberia MFC. Chla, nutrients, oxygen, and carbon variables 
are compared to ocean colour, WOA and GLODAP (GODAE Class 
4 metrics). The evolution of the system shows an improve-
ment in almost all variables, and particularly in carbon-relat-
ed variables. This improvement is due to more realistic initial 
and boundary conditions in the latest version of the system.

Figure 9.21.	 Time series of daily surface Chla for regions of the European North West Shelf Seas, from the 
new product (V11), the previous version (V10), and ocean colour satellite (from McEwan et al., 2021).
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Figure 9.22.	 Taylor diagram summarising the quality improvement of the operational system of the Irish-Bis-
cay-Iberia MFC (part of the Copernicus Marine Service). 

9.2.6.2.3.	Spatial and temporal evaluation

The DM validation is commonly built to test the pre-opera-
tional system for a medium/long simulation using higher 
quality observation datasets. They can include the same ob-
servation data of the NRT validation but characterised by a 
higher quality check (e.g. reprocessed ocean colour product) 
and an additional number of historical in-situ data collec-
tions (e.g, World Ocean Database, SOCAT, EMODnet data col-
lection) that, because of the delay mode quality check, be-
come available a certain time after their acquisition time.

Chla derived from remote sensing is a major dataset for BGC 
OOFS. It is extensively used in DM validation to validate the 
spatial and temporal structures. Figure 9.23 shows the annu-
al average distribution of Chla from the model and satellite 
observations (i.e. GODAE Class 1 metrics). The large-scale 
structures present a good agreement, i.e. the main biogeo-
graphic provinces of Longhurst (1998) including oligotrophic 
gyres (low levels of chlorophyll  in the centre of the basins), 
Antarctic Circumpolar Current, tropical band, Eastern Bound-

ary Upwellings, are well reproduced. Differences at the re-
gional spatial scale are found along the equatorial band, in 
the southern high latitudes, and in coastal regions as high-
lighted by the scatterplot (Figure 9.24). The distribution of 
points shows good estimations in the open sea (for depths 
higher than 1000 m) and underestimations in shallow waters 
(when bathymetry is lower than 1000 m).

Seasonal cycle and interannual variability can be analysed 
using Hovmöller diagrams. Figure 9.25 shows the seasonal 
cycle of Chla in the North Atlantic, from the Global Ocean 
system of the Copernicus Marine Service. The main features 
reproduced are: i) a bloom in spring when the mixed layer, 
rich in nutrients, shoals (light limitation); ii) a decrease of 
Chla concentration in summer due to a thin mixed layer very 
poor in nutrients (nutrient limitation); iii) a secondary bloom 
in autumn when the mixed layer is deepening and nutrients 
are transported in the euphotic layer; iv) a period of weak 
production (light limitation) in winter; and v) a marked sea-
sonal cycle in the extension of the subtropical gyre (retraction 
in winter and extension in summer). The interannual variabili-
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Figure 9.23.	 Annual mean of surface Chla averaged over the period 2009-2018 (mg Chl m-3). Top left: model. 
Top right: satellite L4 observations. Bottom left: RMSD between model and satellite observations. Bottom right: 
log bias (i.e. mean difference of log) between model and observations (from Lamouroux et al., 2019).

Figure 9.24.	 Scatterplot comparison of 2018 
annual averaged surface Chla concentration for 
the model vs satellite observations. The colorbar 
represents the bathymetry (m), from shallow 
(yellow) to deep water columns (dark blue). The 
dashed line is the line 1:1, the plain line is the 
least square regression fit within the data. The 
correlation coefficient R, the bias, the RMSD (re-
ferred to as rmse) and the number of points N are 
computed on the log10-transformed space (from 
Lamouroux et al., 2019).

ty of the south boundary of the oligotrophic gyre (i.e. the area 
between 30°N to 40°N) is also well reproduced by the model.

Long-term oceanographic monitoring stations are invaluable 
platforms to investigate temporal and spatial scales of BGC 
variability and assess BGC and ecosystem models. An exam-
ple is the BATS in the Sargasso Sea, situated in the North At-
lantic subtropical gyre. Figure 9.26 compares the Chla mod-
elled and measured at this station. The model predicts 
reasonably well the subsurface Chla maximum, with concen-
trations slightly higher than in BATS data. The model catches 
the seasonal cycle, with a bloom during the deepening of the 
mixed layer in winter. In summer, the production in the mixed 
layer is more limited and is mainly due to the local reminer-
alization of organic matter (regenerated production).

Observations for a large number of variables are also avail-
able in historical in-situ collections (e.g. nutrients like ni-
trate, phosphate, ammonium, silicate, iron; and carbonate 
system variables like dissolved inorganic carbon, alkalinity, 
pH, pCO2, biomass for phytoplankton and optical quantities) 
contributing to enrich the state validation framework em-
bracing multiple features of the biogeochemical model. 

Figure 9.27 presents a multivariate GODAE Class 1 quantitative 
comparison between model average vertical profiles and the 
reference EMODnet climatological profiles in the North West 
Mediterranean sub-basin. The model reproduces the average 
values and shape of the profiles; modelled profiles are within 
the range of variability of the climatological profiles.
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Figure 9.25.	 Hovmöller diagram (latitude versus time) of surface Chla concentration on 2009-2018 period 
computed with monthly mean fields. Top: model. Bottom: satellite observations (from Lamouroux et al., 2019).

Figure 9.26.	 Hovmöller diagram (depth versus time) of Chla concentration (mg Chl .m-3) in the layer 0-300 
m at BATS station, over the period 2008-2017. Top: model. Bottom: bottle data at BATS station (from Lamou-
roux et al., 2019).
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Figure 9.27.	 Comparison between weekly (grey lines) and annual (black lines) vertical profiles from the model 
run for North West Mediterranean sub-basin in 2019 (part of the Copernicus Marine Service) and climatological 
profiles of nutrients, dissolved oxygen, and carbon variables retrieved or derived from EmodNET dataset (red 
dots for means and dashed lines for standard deviations) (from Salon et al., 2019; Feudale et al., 2021).

9.2.6.2.4.	Process-oriented evaluation

Besides the already mentioned direct skill error calculation 
(e.g. bias, RMSD) and pattern assessments (e.g. spatial cor-
relation between model and observational maps), DM vali-
dation is enriched by process-oriented metrics (i.e. quanti-
ties derived from state variables that describe the results of 
particular processes) and theoretical derived quantities, 
such as stoichiometric indicators N:P, DOC:POC, Chla:POC, 
which contribute to assess the fit-for-purpose of the model 
functioning. Among process-oriented metrics, it is worth 
mentioning those deriving from the use of the continuously 
growing amount of available BGC-Argo floats and glider pro-
files. Metrics are based on the depth, slope, and amplitude of 
several particular biogeochemical features, such as the deep 
Chla maximum, nitracline, and oxygen minimum zones. They 
are associated with the biological carbon pump, the air-sea 
CO2 flux, oceanic pH, oxygen levels, and provide an innova-
tive framework that evaluates the model capability to repro-
duce the interaction of physical (e.g. vertical mixing) and 

biogeochemical (e.g. phytoplankton growth and uptake) pro-
cesses that shape variable vertical profiles (Salon et al., 2019; 
Mignot et al., 2021). 

These metrics are currently used for DM validation but could 
also be easily implemented for NRT validation by routinely 
comparing the forecast skill with pre-operationally defined 
seasonal benchmarks and thus highlighting possible anoma-
lies. For example, Salon et al. (2019) used such metrics to 
evaluate the system of the Mediterranean Sea (Figure 9.28), 
while Mignot et al. (2021) applied them to evaluate the sys-
tem of the Global Ocean (Figure 9.29 and 9.30), both part of 
the Copernicus Marine Service. 

Figure 9.28 shows how the time evolution of the vertical pro-
files matches up with the observations as well as several 
quantitative metrics along the corresponding float trajectory 
in the Mediterranean Sea. Temporal succession of the winter 
vertically mixed blooms, the onset, the time evolution, and 
the depth of the DCM, which typically establishes during the 
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Figure 9.28.	 Time evolution of two BGC-Argo floats in Mediterranean Sea for Chla (left) and nitrate (right). a): 
trajectory of the BGC-Argo float; b): Hovmöller diagrams (depth versus time) of Chla and nitrate concentration 
from float data; c): model outputs matched-up with float position. Metrics for model (solid line) and float data 
(dots): d): surface concentration; e): 0–200 m vertically averaged concentration; f): correlation between vertical 
profiles; g): depth of the deep chlorophyll maximum (blue) and depth of the mixed layer bloom in winter (red) 
to the left, and depth of the nitracline (2 calculation methods) to the right (from Salon et al., 2019).

stratified season, are consistent in the Western Mediterra-
nean Sea (Figure 9.28, left). The analysis is completed by Chla 
profiles, nitrate content, and nitrate-based metrics (Figure 
9.28, right) that allow to evaluate the key coupled physical–
biogeochemical processes (i.e. water column nutrient con-
tent, nitracline, and effect of winter mixing and summer 
stratification on the shape of nitrate profile). The shape of 
the nitrate profile (i.e. correlation values), the temporal evo-
lution of the 0-200 m averaged values and of the nitracline 
depth are consistent for the selected float in the Eastern 
Mediterranean Sea.

Figure 9.29 compares the seasonal time series of MLD, sur-
face Chla, NO3, Si and PO4 in the North Atlantic during the 
“spring bloom”, derived from the BGC-Argo floats observa-
tions and from the Global Ocean system of the Copernicus 
Marine Service. The percent bias and percent RMSD are also 
represented for each metric. The model reproduces the sea-
sonal cycle of surface Chla and nutrients, i.e. the timings of 
minima, maxima, and the onset of the bloom, the winter Chla 
minimum and winter nutrients maxima. However, the skill 
metrics deteriorate in summer with the model underestimat-
ing Chla maximum and overestimating NO3 and PO4 minima. 

The Global system skill for 22 metrics (Mignot et al., 2021) is 
summarised in the Taylor diagram (Figure 9.30), which allows 
for a rapid evaluation of strengths and weaknesses of a model 
simulation. For instance, the global model is skilled at repro-
ducing oxygen levels, cycling of nutrients, and DIC, but the rep-
resentation of Chla, POC, spCO2 and spH needs to be improved. 

Finally, DM validation can be enriched by additional levels 
of process and system validation (Hipsey et al., 2020). These 
aim to assess the model performance, to simulate fluxes 
and rates of transformation, which drive changes in model 
state variables, and to verify emergent properties that are 
not directly predictable by the choices made to build the 
model structure and formulations. Measuring time and 
space variability of in-situ fluxes is difficult and highly re-
source consuming, thus the list of metrics remains restrict-
ed to few fluxes, such as rate of primary production, nutri-
ent uptake, grazing rates, and sinking of organic particles. 
Nevertheless, the general confidence and fit-for-purpose in 
the underlying function of biogeochemical operational 
models can be increased by informing users about the un-
certainty of a wider range of processes featured in the 
model formulation.
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Figure 9.29.	 a): trajectory of a BGC-Argo float located in the North Atlantic. Time series derived from the 
BGC-Argo (blue) and the model simulation (yellow): b): mixed layer depth; c): surface Chla; d): NO3; e): Si; f): PO4. 
For each metric: g): seasonal percent bias; h): percent RMSD (from Mignot et al., 2021).
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Figure 9.30.	 Comparison of BGC-Argo float observations and model values for 22 metrics using a Taylor dia-
gram. The symbols correspond to the metrics and the colours represent the BGC processes with which they are 
associated (from Mignot et al., 2021).

9.2.7.	Output

The purpose of this section is to provide recommendations 
and guidelines about the dissemination of products and 
the delivery of services based on BGC OOFS. These recom-
mendations stem from the experience gained by some op-
erational oceanography service centres, which deliver nu-
merical products and have collected users’ needs through 
the Service Desk, a structure dedicated to answer and man-
age any user request. Products and services, such as the 
production, preparation, and delivery of operational ocean 
forecasts to users in forms that meet their needs, are the 
final goal of an OOFS.

9.2.7.1.	Data formats

Following the community of physical oceanographers, the 
biogeochemical community has widely adopted the NetCDF 
format (🔗24) and the CF metadata conventions (🔗25) for 
standard names and units. These standards are adopted by 
most operational oceanography actors (e.g. within GODAE 
OceanView), including the groups that operate numerical 
ocean prediction systems, and also by most of those deliv-
ering services based on oceanic observations.

24. https://www.unidata.ucar.edu/software/netcdf/
25. https://cfconventions.org/
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9.2.7.2.	Standard products

A BGC OOFS should offer users a reliable and easy access to 
valuable ocean information (past, present, and forecast). Each 
system operator should work to ensure that the following 
common variables (with their acronym or formula in brackets) 
are produced in delayed-mode and real time bases:

•	 nitrate concentration [NO3]
•	 phosphate concentration [PO4]
•	 dissolved oxygen concentration [O2]
•	 chlorophyll-a concentration [Chla]
•	 phytoplankton concentration (expressed as carbon) 
[PHYC]
•	 net primary production of biomass (expressed as car-
bon) [NPP]

In addition to the above standard products, operators should 
also make available the following products, if they are repre-
sented in the model:

•	 silicate concentration [Si]
•	 iron concentration [Fe] 
•	 ammonium concentration [NH4] 
•	 zooplankton concentration (expressed as carbon, mass, 
or mole) [ZOOC]
•	 PFTs chlorophyll-a concentration [PFTs]
•	 dissolved inorganic carbon concentration [DIC] 
•	 total alkalinity [TALK]
•	 pH [pH]
•	 surface pCO2 [spCO2]
•	 air-sea CO2 flux [fCO2]
•	 light attenuation coefficient [Kd]
•	 photosynthetic photon flux [PAR]
•	 euphotic layer depth [ZEU]
•	 secchi_depth_of_sea_water [ZSD]

Model data are usually archived in the units specified by 
the International System of Units (SI Units), being mole per 
cubic metre (symbol mol m-3) for concentration in seawater.

9.2.7.3.	Data storage

The 2D or 3D concentrations of the modelled prognostics and 
diagnostics variables are saved and stored instantaneously, 
or averaged over specific time periods (daily, weekly, month-
ly, etc.). It has to be underlined that to store outputs requires 
substantial computer disk space, especially for biogeochem-
ical models which can generate a lot of variables or derived 
quantities. This should be considered before the operational 
system is set up.

9.2.7.4.	Other end-user products

Other data and information, called “end-user products”, can 
be derived from or in addition to the standard products, with 
the purpose of building indicators of the marine environ-
ment for water quality monitoring, pollution control (eutro-
phication phenomena), food web indicators, etc.

9.2.7.5.	Applications

The scientific community has identified key variables and in-
dicators to evaluate current state and likely future condi-
tions of the ocean, such as the EOV (from the GOOS Expert 
Panels) or the OMI   (from the Copernicus Marine Service). 
Oxygen, chlorophyll-a, primary production, nutrients, pH, 
and CO2 air-sea flux are monitored to keep track of ocean 
health and changes, also to advise the policy makers. These 
indicators provide important information also for ecosys-
tem-based fish management, sustainable aquaculture, and 
fisheries research. The number of users of BGC model prod-
ucts has been steadily increasing during the last years (Fig-
ure 9.31), highlighting the growing interest for BGC.

9.2.8.	Higher trophic levels modelling

Researches by marine biologists, ecologists, and fishery scien-
tists very often use a set of environmental variables to explain 
available observations for one species of interest and make pre-
dictions. Examples of frequently collected information include 
geo-referenced fishery catch data or acoustic-derived abun-
dance of a fish species, scientific sampling of eggs, larvae or ju-
veniles, satellite tracking of individuals of large fish, seabirds, 
turtles or marine mammals, or simply visual observations 
(whales). These studies are based on the correlation between 

Figure 9.31.	 Number of distinct users of BGC 
model products of the Copernicus Marine 
Service during the last years (courtesy of the 
Service Desk).

CHAPTER 9. BIOGEOCHEMICAL MODELLING 283



outputs of the statistical or mechanistic model developed using 
the environmental variables and the observed variables, i.e. the 
presence or abundance of the studied species at a given stage of 
development. Since the relationships are defined using observa-
tions collected in a very dynamic environment with multiple 
sources of variability in time and space, it is essential to use en-
vironmental variables co-located with the observations. Howev-
er, due to limitation in observations, marine scientists most of-
ten have to aggregate their data sets to crude resolutions, e.g. by 
season or year in large geographical boxes, or they restrain their 
analyses to satellite-derived oceanic variables, such as SST 
(available since early 1980s), SSH (since 1992), and sea surface 
Chla concentration (since 1998). The provision of these satel-
lite-derived variables has generated large progress in the under-
standing of ecology and population dynamics of marine species. 
However, there are still some gaps in the use of these variables 
given that: i) satellites measure only the surface of the ocean; 
and ii) surface Chla is a proxy of primary production, which is not 
necessarily closely related to the upper trophic level animals 
that feed on zooplankton or larger organisms (e.g. micronekton). 
Furthermore, in the development phase of these organisms 
(lasting from days to months), the spatial and temporal correla-
tion between primary production and these animals may be lost. 

Modelling tools have the potential to fill these gaps, by sim-
ulating the marine food web with primary production, zoo-
plankton, and micronekton as essential variables to support 
HTL. As explained in Section 9.1.1, BGC and HTL models are 
often separate models as they focus on different processes 
but BGC models can provide input for HTL models, and there 
are examples of BGC-HTL coupled models (e.g., Libralato and 
Solidoro, 2009; Rose et al., 2015; Aumont et al., 2018; Diaz et 
al., 2019). However, presently the link (online/offline cou-
pling) is neither straightforward nor fully investigated. Thus, 
HTL models currently must rely also on other sources of in-
put, such as satellite and in-situ data collection. 

Connections, challenges, and expectations in bridging BGC 
and HTL modelling are discussed in the next subsections.

9.2.8.1.	Essential variables

Primary production, zooplankton, and micronekton are es-
sential ecosystem variables for the development of applica-
tions directed to management and conservation of marine 
resources and its biodiversity. Primary production is the 
source of energy to low and mid-trophic level functional 
groups. Zooplankton are a crucial link between the primary 
producers (mainly phytoplankton) and the micronekton at 
the mid-trophic level of the marine food web, as well as 
many mid-size pelagic species and some specialised large 
predators (e.g. baleen whales). Micronekton is defined by a 
size range between 1 and 10 cm, and include many species of 

fish, crustaceans and cephalopods, as well as the early life 
stages of many larger fish species. The micronekton that in-
habit permanently the lower mesopelagic depths (~ below 
300-400m) feed on the organic matter sinking in the water 
column. All micronekton organisms, including the species 
temporarily occupying this trophic level and size range, are 
the forage of larger marine species that have developed var-
ious skills to detect and feed on them. 

Primary production, zooplankton, and micronekton are thus key 
inputs to investigate the mechanisms driving fish recruitment, 
as well as movement and migration of oceanic predators.

9.2.8.2.	 Satellite-derived and in-situ observations

9.2.8.2.1.	Primary production

To establish which mechanisms control the distribution, re-
cruitment, and abundance of large oceanic exploited or pro-
tected species, marine scientists require a three-dimension-
al representation of the environment and not only surface 
observations as those provided by satellites. The existence 
of a deep Chla maximum (e.g. in tropical waters and the Arc-
tic) is a good illustration of the lack of adequation between 
surface and subsurface. One possible solution for this prob-
lem is to extrapolate the satellite observations over the wa-
ter column according to some empirical models developed 
to estimate vertically integrated primary production, or NPP, 
based on surface Chla and key variables (SST and solar radi-
ation). This product provides an essential foundation to 
monitor ocean productivity. However, various flaws remain, 
there are caveats for shallow waters and the Arctic, as well as 
difficulties in resolving persistently cloudy regions. However, 
primary production can also be provided by BGC models, of-
fering the better three-dimensional vision as opposed to the 
satellite-based estimates, but this solution is still little used 
although the improvements in BGC models (in particular 
thanks to the use of data assimilation) are promising.

9.2.8.2.2.	Zooplankton

Zooplankton is certainly the variable on which have been de-
veloped the most advanced applications on larval recruit-
ment, fish habitat, dynamics of small and mid-size pelagic 
species as well as baleen whales. Despite decades of sam-
pling efforts at sea, zooplankton observations remain limit-
ed to a few valuable long-term time series from oceano-
graphic stations and a partial global climatology from the 
compilation of all available data collected, which represents 
a huge effort of data standardisation (Moriarty and O’Brien, 
2013). Therefore, only numerical models can provide the syn-
optic maps of zooplankton distributions needed by ecolo-
gists and fishery scientists. 
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9.2.8.2.3.	Micronekton

Micronekton species, including a huge biomass of mesope-
lagic organisms, are among the largest unknowns in the 
functioning of the global ocean ecosystem. This is a critical 
gap to understand the ecology of their predators for which 
there is a lot of interest in terms of resource management 
and conservation. In recent years, climate change, carbon 
storage in the deep ocean, and the role of diel vertical migra-
tion of mesopelagic (and zooplankton) have become major 
scientific issues. 

But, even more than for zooplankton, the sparsity of obser-
vations on a global scale and over time poses a real problem 
for modellers of higher trophic levels. The traditional ap-
proach for sampling micronekton is net trawling. Many stud-
ies are simply qualitative descriptions of species, quite often 
used in combination with acoustic sampling to support the 
extrapolation of acoustic signal to biomass estimates. How-
ever, biomass based on acoustic sampling, especially with 
one single frequency, can be easily biased by one or two or-
der of magnitudes due to the very strong resonance (back-
scatter) of some organisms, e.g. gelatinous organisms con-
taining gas bubbles (Proud et al., 2018) or conversely very 
weak resonance despite large biomass, e.g. fish without swim 
bladder (Dornan et al. 2019; Escobar-Flores et al. 2019). In the 
absence of sufficient data coverage, relatively simple model-
ling approaches are used to simulate these functional groups 
in a food web model, relying on allometric scale relation-
ships, first macro-ecological principles, or fluxes between 
trophic boxes. 

9.2.8.3.	 Models of zooplankton and mid-trophic levels

9.2.8.3.1.	Complexified BGC models

Improving resolution of primary production in BGC models 
helps to get better zooplankton predictions, although the re-
lationship is not so straightforward. The reason is that in 
models the zooplankton component is used as the closure 
term of the biogeochemical cycles. To compensate for the 
lack in biogeochemical models of zooplankton predation by 
higher trophic levels, a mortality function with a mortality 
rate increasing rapidly (quadratic term) is used to avoid nu-
merical instability at high levels of biomass. A high mortality 
rate is realistic in warm tropical waters but less for cold wa-
ters in which the lifespan of zooplankton is much longer, 
leading to high biomass persisting during fall. Underestimat-
ed zooplankton biomass can then have a cascading effect on 
the phytoplankton mortality. To address this issue in biogeo-
chemical models, it may help the addition of a trophic level 
feeding on zooplankton, e.g. the micronekton at the interme-
diate trophic level, or a simplified representation of the entire 
upper food web with a size spectrum approach (Zhou et al 
2010). Gelatinous organisms are also increasingly recognised 

as a key group in marine biogeochemical cycles as they need 
to be included to account for zooplankton mortality. A recent 
development consisted in the introduction of a jellyfish func-
tional group in the biogeochemical model PLANKTOM (Wright 
et al., 2021), suggesting that it can have a large direct influ-
ence on the zooplankton as well as on the other groups 
through trophic cascades. However, parameterisation of 
physiological rates and validation of micronekton and jelly-
fish carbon biomass are limited by the deficit of data on these 
species. Moreover, adding mid-trophic level compartments 
would still increase complexity of BGC models, which are al-
ready complicated as including dozens of variables.

9.2.8.3.2.	Spatially explicit models with transport

Models with less complexity and easier to parameterize can be 
used in the meantime. They are useful approaches comple-
mentary to more complex BGC models, allowing faster testing 
studies, e.g. for processes and new functional groups, with 
outputs providing useful intermediate benchmarks. These 
models do not include all the detailed biogeochemical cycles 
but focus on food web functional groups, size spectrum, or 
target species. The link with the lower trophic level can be as 
simple as an energy transfer coefficient between primary pro-
duction and each functional group. A key advantage of re-
duced complexity is the greater facility to implement quantita-
tive methods to estimate parameters using available 
observations, whether at global or regional level. Neverthe-
less, such models still simulate the transport by oceanic cur-
rents, either based on advection-diffusion equations like the 
ocean circulation and BGC models (Maury et al., 2007; Lehodey 
et al., 2010), or with mean transfers between adjacent grid 
cells and geographical boxes (Audzijonyte et al., 2019). Trans-
port can be also simulated using Lagrangian IBM approaches 
that keep track of individuals or meta-individuals character-
ised by individual state variables (weight, length, energy stor-
age, life stage, etc) and behavioural rules. However, due to 
computational cost, this approach is still usually limited to 
regional domains or single species (DeAngelis and Gross, 1992; 
Carlotti and Wolf, 1998; Miller et al., 1998; Huse et al., 2018). 

9.2.8.3.3.	Ecosystem food web and size spectrum models

Other modelling approaches are oriented towards a represen-
tation of the ecosystem food web to explore the interactions 
between fisheries and exploited, by-catch, or protected spe-
cies (Christensen and Walters, 2004). Zooplankton and 
mid-trophic levels are often defined by a small number of 
functional groups in the food web interactions. The difficulty 
comes from the rapid increase in the number of parameters as 
functional groups and species are added in the food web 
model. The increasing complexity in the network of connec-
tions between the numerous groups, species and sometimes 
life stages of species, is developed at expense of the spatial 
description. A few approaches combine such complexity with 
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a semi-spatially explicit representation, i.e. through bulk-trans-
fer between geographical regions or cells from various sizes 
(e.g. Audzijonyte et al., 2019). The size spectrum is an approach 
that strongly simplifies the view of a marine ecosystem. 

The size-based ecosystem modelling is a classical approach 
that is used to predict biomass distribution and size-structure 
of marine consumers (see review in Blanchard et al., 2017). Jen-
nings and Collingridge (2015) have developed this approach at 
global scale. The model predicts rates and magnitudes of en-
ergy flux from primary producers to consumers that depend 
on primary production, transfer efficiency, predator and prey 
body mass, and temperature. Biomass is estimated in the wa-
ter column without considering the horizontal transport nor 
the vertical structure, and mesopelagic communities are not 
explicitly modelled. Maury et al. (2007) have developed a sim-
ilar size-spectrum approach but that also accounts for the in-
fluence of spatial dynamics and vertical diel migration. Au-
mont et al. (2018) have fully coupled this latter model to a 
physical-biogeochemical model allowing to explore two-way 
interactions between lower and higher trophic levels of the 
pelagic ecosystem. Petrik et al. (2019 and 2020) have proposed 
another approach that discretizes the size spectrum into a few 
stage-structured functional groups as in De Roos et al. (2008). 
Their demographic system at each spatial grid cell is forced 
offline by vertically integrated temperature, vertically integrat-
ed zooplankton biomass concentrations and mortality losses, 
bottom temperature, and detrital fluxes, but there is no trans-
port or fish movement. 

There is no simple solution to model end-to-end ocean eco-
systems (Fulton, 2010) but various approaches that reflect 
the different scientific questions that are investigated. The 
demand for greater details in taxonomic representation and 
population dynamics (including transport, recruitment, and 
migrations) of target species, creates major problems in cal-
culation, estimation of parameters, and analysis of uncer-
tainties, which may be a critical issue if the model has to 
support management and policy decisions. For these rea-
sons, to formulate management advice for quotas of catches 
and/or effort and conservation measures, RFMOs mostly rely 
on standard stock assessment modelling approaches, fitted 
to key target species and fisheries. These models have been 
used since the 1960s and can integrate multiple sources of 
information to estimate the key parameters of population 
dynamics and fisheries for a single species (Maunder and 
Punt, 2013). However, they treat the environmental variability 
as noise that is removed from fishing data using standardisa-
tion methods or integrated as a random signal in the predict-
ed recruitment process, and thus they cannot be used to 
project mid- to long-term changes (e.g. climate change ef-
fects on fisheries).

9.2.8.4.	 Contribution from operational oceanography 

Improved BGC models with assimilation of in-situ and satel-
lite data is an approach with promising results and rapid 
progress. Thanks to data assimilation, the physical and bio-
geochemical models used in operational oceanography to 
predict and forecast ocean physics and primary production 
are becoming more and more accurate. Consequently, they 
are used by an increasing number of marine biologists, ecol-
ogists, and fishery scientists. The outputs of biogeochemical 
models are also essential to explore the historical period 
before the satellite era, which started in the late 1970s (see 
Figure 9.7). The information generated by BGC models is also 
needed to develop seasonal forecasting of ocean ecosys-
tems, population dynamics of marine animals, and to ex-
plore the impact of climate change with long-term projec-
tions, once forced by Earth System Models. Many BGC models 
also provide dissolved oxygen concentration and pH, which 
are useful variables for modelling habitats of fishes. Finally, 
the recent progress achieved in operational oceanography 
contributes to an overall improvement of all types of zoo-
plankton, micronekton and ecosystem models. 

A global zooplankton and micronekton model-based product 
(Lehodey et al., 2010 and 2015) is delivered in the Copernicus 
Marine Service. With only 11 parameters, the model simulates 
one functional group of zooplankton and six functional groups 
of micronekton in the global ocean, with a vertical structure 
simplified into three layers in the water column (epipelagic, 
and upper- and lower-mesopelagic) allowing to consider ver-
tically migrant and non-migrant mesopelagic behaviours. The 
functional groups are driven by primary production, euphotic 
depth, temperature, and horizontal currents with time of de-
velopment and mortality rate linked to water temperature. The 
limited number of parameters allows implementing quantita-
tive methods to estimate their optimal values by searching for 
the best fit between observations and predictions (Lehodey et 
al., 2015). However, the sparsity of direct biomass observations 
and the difficulty to convert the signal of acoustic echo-sound-
ers into biomass is still an issue that requires further develop-
ments. In particular, there is the need to progress on acoustic 
models (Jech et al., 2015). 

9.2.8.5.	 Applications

Zooplankton and micronekton outputs produced by the Co-
pernicus Marine Service have proved to be useful variables 
along with physical and biogeochemical variables to model 
feeding habitats, feeding behaviour, and migrations of large 
oceanic protected species such as marine mammals and tur-
tles (e.g., Abecassis et al., 2013; Lambert et al., 2014; Cham-
bault et al., 2016; Roberts et al., 2016; Green et al., 2020; 
Pérez-Jorge et al., 2020; Romagosa et al., 2020 and 2021). 
These applications contribute to the scientific advice needed 
to propose marine spatial management measures (e.g., Ma-
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rine Protected Areas and Migratory Corridors), the planning 
of activities at seas (e.g., offshore energy, military exercises 
and tests, and navigation routes), and real-time operational 
tools to limit the interaction of fisheries with protected spe-
cies (Howell et al., 2008; Hobday et al., 2010; Hazen et al. 
2018). The combination of zooplankton and micronekton 
variables has been used in a mechanistic model of Antarctic 
krill population, including food conditions that adults need 
to successfully produce eggs and the density of predators 
feeding on spawned eggs (Green et al. 2021). 

Finally, spatially explicit population dynamics of target spe-
cies can be driven by these variables to study recruitment, 
natural mortality, and movements linked to feeding be-
haviour and spawning migrations of fish (Lehodey et al., 
2008; Dueri et al., 2012; Hernandez et al., 2014; Scutt Phillips 
et al., 2018; Senina et al., 2019). These models, combined with 
quantitative methods integrating various sources of georef-
erenced data (i.e. catch, size frequencies of catch, tagging 
data, density of larvae, and acoustic biomass abundance), 
provide new tools to assess the status of exploited stocks 
(Senina et al., 2008 and 2020; Dragon et al., 2018), to test spa-
tial management scenarios (Sibert et al., 2012), to develop 
real time monitoring applications (Lehodey et al., 2017), and 
forecast seasonal to long-term changes along with IPCC cli-
mate scenarios (Lehodey et al., 2013; Dueri et al., 2014; Bell et 
al., 2013 and 2021).

9.2.9.	Inventories

The first Green Ocean applications of operational oceanogra-
phy, coupling biogeochemical models, and assimilation com-
ponents from the existing GODAE systems, were discussed in 

Brasseur et al. (2009). Some years later, Gehlen et al. (2015) 
and Fennel et al. (2019) discussed the current state and fu-
ture prospects of analysis and prediction tools for ocean bio-
geochemistry and ecosystems, and presented representative 
examples of global and regional physical–biogeochemical 
systems implemented in pre-operational or operational 
mode. Currently, a few forecasting systems are fully opera-
tional, i.e. maintained by an operational centre with strict 
commitment to routinely provide forecasts.

Tables 9.1 and 9.2 provide initial inventories of the operation-
al forecasting and multi-year systems, based on the litera-
ture mentioned above and completed in collaboration with 
the MEAP-TT working group that is one of the OceanPredict 
Task Teams. General information is given for each system, 
along with type (from global to coastal scale), producer, res-
olution, implemented model, data assimilation method, and 
product catalogue, as well as the web address that the read-
er can consult for further details.

Table 9.1.	 	 Initial inventory of BGC Global (G) to Regional (R) to Coastal (C) operational forecasting systems.

WebsiteProductsBGC Data Assimilation  
(method and data) 

PHY-BGC 
models 

ResolutionCovered 
Area 

SystemType

https://marine.
copernicus.eu 

G Global Ocean BGC 
system (MOI, France)

Global 
ocean 

1/4° PISCES coupled 
offline with 
NEMO (1/12° 
degraded to 
1/4°) at daily 

frequency

SEEK method, using 
total Chla from OC 

satellite data

Chla, NO3, PO4, 
Si, Fe, O2, PHYC, 
NPP, spCO2, pH, 
10-days forecast, 
updated weekly
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WebsiteProductsBGC Data Assimilation  
(method and data) 

PHY-BGC 
models 

ResolutionCovered 
Area 

SystemType

https://marine.
copernicus.eu

https://marine.
copernicus.eu

https://marine.
copernicus.eu

https://marine.
copernicus.eu

https://marine.
copernicus.eu

R

R

R

R

R

Northwest European 
Shelf Seas BGC sys-
tem (UK Metoffice, 

UK)

TOPAZ5-ECOSMO 
Arctic Ocean system 
(Norwegian Meteo-
rological Institute, 
Norway; Nansen 

Environmental and 
Remote Sensing 
Center, Norway) 

Baltic Sea system 
(Swedish Meteoro-
logical and Hydro-
logical Institute, 

Sweden) 

Iberia-Biscay-Irish 
system (MOI, France 

+ consortium) 

MedBFM3 model 
system (Euro Med-
iterranean Center 
on Climate Change 
- CMCC, Italy; OGS, 

Italy) 

European 
North-
West 

shelf Seas

Arctic 
Region

Baltic Sea

Iberi-
an-Bis-

cay-Irish 
shelves 

Mediter-
ranean 

Sea 

~7 km

6 km

1 nautical 
mile

1/36° 

1/24°

ERSEM coupled 
online with 

NEMO

ECOSMO bio-
logical model 

coupled online 
to the HYCOM 
ocean physical 

model 

ERGOM coupled 
online with 

NEMO

NEMO-PISCES 
online coupled 
model; nested 
into PHY and 
BGC solutions 

from the Global 
MFC

BFM v5 model, 
off-line cou-

pled with NEMO 

3D-Var NEMOVAR 
method, using total 

Chla from OC satellite 
data

Assimilates Chla 
from OC satellite 

data using a nudging 
approach, and surface 

observations are 
projected downward 
in the water column 

applying an algorithm 
described by Uitz et 

al. (2006). 

_

No assimilation 

3DVAR-BIO method, 
using Chla from 

satellite and vertical 
profiles of Chla and 

nitrate  from BGC-Argo

Chla, NO3, PO4, 
O2, PHYC, NPP, 
spCO2, pH, Kd, 
6-day forecast, 
updated daily

Chla, NO3, PO4, 
Si, O2, PHYC, 
ZOOC, NPP, 

spCO2, DIC, pH, 
Kd, 10-day fore-
cast, updated 

daily 

Chla, NO3, PO4, 
NH4, O2, spCO2, 
pH, NPP, ZSD, 
6-day forecast, 
updated twice 

daily

Chla, NO3, NH4, 
PO4, Si, Fe, 

O2, PHYC, NPP, 
spCO2, DIC, pH, 
ZEU, 10-days 

forecast updat-
ed on a weekly 

basis 

Chla, PHYC, 
ZOOC, NO3, 

NH4, PO4, Si, O2, 
spCO2, pH, fCO2, 
ALK, DIC, NPP, 

10-day forecast 
updated daily 
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WebsiteProductsBGC Data Assimilation  
(method and data) 

PHY-BGC 
models 

ResolutionCovered 
Area 

SystemType

https://marine.
copernicus.eu

https://www.po-
seidon.hcmr.gr

http://www.na-
noos.org/prod-
ucts/j-scope/
home.php 

https://coast-
alscience.noaa.
gov/research/
stressor-im-
pacts-mitiga-
tion/hab-moni-
toring-system/ 

https://ereefs.
org.au/ereefs

www.vims.edu/
hypoxia; https://
oceansmap.
maracoos.org/
chesapeake-bay/

R

R

C

C

C

C

Black Sea system 
(University of Liege, 

Belgium) 

POSEIDON system 
(HCMR, Greece) 

J-SCOPE forecast 
system (JISAO’s Sea-
sonal Coastal Ocean 

Prediction of the 
Ecosystem, funded 

by NOAA, US) 

Harmful Algal Bloom 
Monitoring System 
(National Centers 
for Coastal Ocean 
Science, formed by 
the NOAA, US) 

Great Barrier Reef 
(Bureau of Meteo-

rology et al.) 

Chesapeake Bay

Black Sea 

Mediter-
ranean 

Sea 

California 
Current 
System 

Coastal 
and lake 

regions of 
the US 

Great 
Barrier 

Reef 

Chesa-
peake 

Bay

~3km 

1/10° 

1/10° 

_ 

_ 

600m

BAMHBI, online 
coupled with 

NEMO 

ERSEM-II 
model, on-line 
coupled with 

POM 

ROMS ocean 
model coupled 

with a BGC 
model 

_ 

CSIRO eReefs 
modeling suite 

ChesROMS-ECB

“Ocean Assimilation 
Kit” (OAK; Vanden-
bulcke and Barth, 

2015) for assimilation 
of surface Chla from 

satellite 

No assimilation 

_

_

_

_

Chla, PHYC, NO3, 
PO4, Si, NH4, 
O2, spCO2, pH, 
fCO2, ALK, DIC, 
NPP, Kd, PAR, 

10-day forecast 
produced daily 

Chla, PHYC, 
ZOOC, BACC, 

NO3, NH4, PO4,  
4-day forecast 
updated daily 

Seasonal 
forecasts of 
sea surface 
temperature 
(SST) and BGC 

variables 

Daily forecast 

A few days 
forecast 

Nowcasts and 
a few days 

forecasts of 
physical and 
BGC variables 
(focusing on 

O2, acidification 
metrics, T, S)
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Table 9.2.	 	 Inventory of BGC Global (G) to Regional (R) to Coastal (C) multi-year systems.

WebsiteProductsBGC Data Assimilation  
(method and data) 

PHY-BGC 
models 

ResolutionCovered 
Area 

SystemType

https://marine.
copernicus.eu

https://www.
cls.fr/

https://marine.
copernicus.eu

https://marine.
copernicus.eu

https://marine.
copernicus.eu

G 

G

R

R

R

Global Ocean BGC 
system (MOI, France) 

Global Ocean low 
and mid-trophic 

levels product (CLS, 
France) 

Northwest European 
Shelf Seas BGC 
system (UK Met 
Office, UK) 

TOPAZ-ECOSMO 
reanalysis system 
(Nansen Environ-

mental and Remote 
Sensing Center, 

Norway) 

Baltic Sea system 
(Swedish Meteoro-
logical and Hydro-
logical Institute, 

Sweden) 

Global 
ocean 

Global 
ocean 

European 
North-
West 

shelf Seas 

Arctic 
Region 

Baltic Sea 

1/4° 

1/12° 

~7 km

25 km 

1 nautical 
mile 

PISCES, coupled 
offline with 

NEMO at daily 
frequency 

LMTL com-
ponent of 
SEAPODYM 

dynamical pop-
ulation model, 
driven offline 
by NEMO, NPP 
from satellite 
and PISCES 

ERSEM, coupled 
online with 

NEMO 

ECOSMO bio-
logical model 

coupled online 
to the HYCOM 
ocean physical 

model 

SCOBI coupled 
to NEMO 

No assimilation 

No assimilation 

3D-Var NEMOVAR 
method, using surface 

PFT Chla from OC 
satellite data 

Assimilates surface 
Chla a from OC 

satellite and in-situ 
nutrient profiles, using 
an Ensemble Kalman 
Smoother (EnKS) 

method, after a gauss-
ian anamorphosis for 
all BGC data. EnKS is 
preferred to EnKF in 

delayed mode 

LSEIK data assimila-
tion scheme, using 

oxygen and nutrients 

Chla, NO3, PO4, 
Si, Fe, O2, PHYC, 
NPP, spCO2, pH, 
1993 onwards 

2D fields of 
zooplankton 
biomass and 
six groups of 
micronekton 
biomass,  1998 

onwards 

Chla, PFTs, 
PHYC, NO3, PO4, 
O2, spCO2, pH, 
NPP, Kd, 1993 

onwards 

Chla, NO3, 
PO4, O2, PHYC, 
ZOOC, Kd, 2007 

onwards 

Chla, NO3, NH4, 
PO4, O2, 1993 

onwards 
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WebsiteProductsBGC Data Assimilation  
(method and data) 

PHY-BGC 
models 

ResolutionCovered 
Area 

SystemType

https://marine.
copernicus.eu

https://marine.
copernicus.eu

https://marine.
copernicus.eu

https://marine.
copernicus.eu

https://ocean.
ust.hk:8443/
SiteMapApi/
new/index.jsp

R

R

R

R

R

Iberia Biscay Irish 
system (MOI, France) 

Global Ocean low 
and mid-trophic 

levels product (CLS, 
France) 

MedBFM3 model 
system (OGS, Italy) 

Black Sea system 
(University of Liege, 

Belgium) 

China Sea Multi-
Scale Ocean 

Modelling System 
(CMOMS)

Irish-Bis-
cay-Ibe-

rian 
shelves 

Global 
ocean 

Mediter-
ranean 

Sea 

Black Sea 

China 
Seas

1/12°  

1/12° 

1/24° 

~3km 

~3km 

NEMO-PISCES 
online coupled 
model; nested 
into PHY and 
BGC solutions 

from the Global 
MFC

LMTL com-
ponent of 
SEAPODYM 

dynamical pop-
ulation model, 
driven offline 
by NEMO, NPP 
from satellite 
and PISCES 

BFM v5 model, 
off-line cou-

pled with NEMO 

BAMHBI model, 
online coupled 

with NEMO 

ROMS ocean 
model coupled 

with a BGC 
model 

No assimilation 

No assimilation 

3DVAR-BIO method, 
using surface Chla 

No assimilation 

No assimilation 

Chla, NO3, NH4, 
PO4, Si, Fe, 

O2, PHYC, NPP, 
spCO2, DIC, 
pH, ZEU, 1993 

onwards 

2D fields of 
zooplankton 
biomass and 
six groups of 
micronekton 
biomass,  1998 

onwards 

Chla, PHYC, 
ZOOC, NO3, 

NH4, PO4, Si, O2, 
spCO2, pH, fCO2, 
ALK, DIC, NPP, 
1999 onwards 

Chla, PHYC, O2, 
NO3, PO4, spCO2, 
pH, fCO2, ALK, 
DIC, NPP, 1992 

onwards 

Chla, PHYC, 
ZOOC, NO3, NH4, 
PO4, O2, spCO2, 
pH, ALK, DIC, 
small detritus, 
large detritus, 
terrestrial POM, 
and terrestri-
al DOM; 1992 

onwards
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